%0 Journal Article %J Deep Sea Research Part II: Topical Studies in Oceanography %D 2011 %T Distribution, abundance and trail characteristics of acorn worms at Australian continental margins %A Tara J Anderson %A Rachel Przeslawski %A Maggie Tran %K Acorn worms; Enteropneusta; depth range; trail behaviour; sediment characteristics; deep-sea %X

Acorn worms (Enteropneusta), which were previously thought to be a missing link in understanding the evolution of chordates, are an unusual and potentially important component of many deep-sea benthic environments, particularly for nutrient cycling. Very little is known about their distribution, abundance, or behaviour in deep-sea environments around the world, and almost nothing is known about their distribution within Australian waters. In this study, we take advantage of two large-scale deep-sea mapping surveys along the eastern (northern Lord Howe Rise) and western continental margins of Australia to quantify the distribution, abundance and trail-forming behaviour of this highly unusual taxon. This is the first study to quantify the abundance and trail behaviour of acorn worms within Australian waters and provides the first evidence of strong depth-related distributions. Acorn worm densities and trail activity were concentrated between transect-averaged depths of 1600 and 3000 m in both eastern and western continental margins. The shallow limit of their depth distribution was 1600 m. The deeper limit was less well-defined, as individuals were found in small numbers below 3000 down to 4225 m. This distributional pattern may reflect a preference for these depths, possibly due to higher availability of nutrients, rather than a physiological constraint to greater depths. Sediment characteristics alone were poor predictors of acorn worm densities and trail activity. High densities of acorn worms and trails were associated with sandy-mud sediments, but similar sediment characteristics in either shallower or deeper areas did not support similar densities of acorn worms or trails. Trail shapes varied between eastern and western margins, with proportionally more meandering trails recorded in the east, while spiral and meandering trails were both common in the west. Trail shape varied by depth, with spiral-shaped trails dominant in areas of high acorn worm densities (2000–3000 m water depth) while meandering trails were common over a much broader depth range and were the only trails recorded in deep environments >3000 m. While species-specific patterns may in part explain these differences, evidence suggests that nutrient availability is also likely to be an important driving factor, supporting the hypothesis put forward by Smith et al. (2005) that acorn worms meander when searching for food and form a spiral when feeding in a nutrient-rich area.

%B Deep Sea Research Part II: Topical Studies in Oceanography %I Deep Sea Research II %V 58 %P 970 - 978 %8 01 Apr 2011 %U http://www.sciencedirect.com/science/article/pii/S0967064510003528 %N 7-8 %! Deep Sea Research Part II: Topical Studies in Oceanography %R 10.1016/j.dsr2.2010.10.052