Baseline information on habitats is required to manage Australia's northern tropical marine estate. This study aims to develop an improved understanding of seafloor environments of the Timor Sea. Clustering methods were applied to a large data set comprising physical and geochemical variables that describe organic matter (OM) reactivity, quantity and source, and geochemical processes. Arthropoda (infauna) were used to assess different groupings. Clusters based on physical and geochemical data discriminated arthropods better than geomorphic features. Major variations among clusters included grain size and a cross-shelf transition from authigenic-Mn–As enrichments (inner shelf) to authigenic-P enrichment (outer shelf). Groups comprising raised features had the highest reactive OM concentrations (e.g. low chlorin indices and C : N ratios, and high reaction rate coefficients) and benthic algal δ13C signatures. Surface area-normalised OM concentrations higher than continental shelf norms were observed in association with: (i) low δ15N, inferring Trichodesmium input; and (ii) pockmarks, which impart bottom–up controls on seabed chemistry and cause inconsistencies between bulk and pigment OM pools. Low Shannon–Wiener diversity occurred in association with low redox and porewater pH and published evidence for high energy. Highest β-diversity was observed at euphotic depths. Geochemical data and clustering methods used here provide insight into ecosystem processes that likely influence biodiversity patterns in the region.

Document Type: