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ABSTRACT 43 

Aim: Protected areas have become pivotal to the modern conservation planning toolbox but a limited 44 

understanding of marine macroecology is hampering their efficient design and implementation in 45 

pelagic environments. We explored the respective contributions of environmental factors and human 46 

impacts in capturing the distribution of an assemblage of commercially valuable, large-bodied, open-47 

water predators (tunas, marlins, mackerels). 48 

Location: Western Australia. 49 

Methods: We compiled ten years of commercial fishing records from the Sea Around Us Project and 50 

derived relative abundance indices from standardised catch rates while accounting for confounding 51 

effects of effort, year, gear type and body mass. We used these indices to map pelagic “hotspots” over 52 

a 0.5°-resolution grid, and we built random forests to estimate the importance of 29 geophysical, 53 

oceanographic and anthropogenic predictors in explaining their locations. We additionally examined 54 

the spatial congruence between inferred hotspots and an extensive network of marine reserves, and 55 

determined whether patterns of co-occurrence deviated from random expectations using null model 56 

simulations.  57 

Results: (1) We identify three regional pelagic hotspots off the coast of Western Australia. (2) 58 

Geomorphometrics alone explained more than 50% of the variance in relative abundance of pelagic 59 

fish, and submarine canyon presence ranked as the most influential variable in the North bioregion. 60 

Seafloor rugosity and fractal dimension, salinity, ocean energy, current strength and human impacts 61 

were also identified as important predictors. (3) The spatial overlap between hotspots and marine 62 

reserves was limited, with most high-abundance areas primarily found in zones where anthropogenic 63 

activities are subject to few regulations. 64 

Main conclusions: This study reveals that geomorphometrics are potentially valuable indicators of the 65 

distribution of mobile fish species and highlights the relevance of harnessing static topography as a 66 

blueprint for ocean zoning and spatial management. 67 

68 
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INTRODUCTION 69 

The past decades have seen unprecedented changes in the abundance of marine living resources. 70 

Overexploitation since the 1950s (Pauly, 2012; Pauly & Zeller, 2016) is widely accepted as a catalyst 71 

of modern declines in elasmobranchs (sharks, skates and rays) and teleosts globally (e.g. Collette et al., 72 

2011; Juan-Jordá et al., 2011; Letessier et al., In press), despite diverging perspectives on the present 73 

status and future prospects of the world’s fisheries (Hampton et al., 2005; Daan et al., 2011; Froese et 74 

al., 2012; Cook, 2013; Froese et al., 2013; Grubbs et al., 2016), Rebuilding efforts are now underway 75 

in several ecosystems (Worm et al., 2009), however their success to date remains relatively modest as 76 

insufficient control on current exploitation rates often precludes recovery, even for resilient stocks that 77 

may have adapted to moderate levels of extractive pressure (Murawski, 2010; Neubauer et al., 2013). 78 

In this context, a new generation of multilateral environmental treaties has emerged to mitigate 79 

overfishing and potentially forestall large-scale erosion of biodiversity. The United Nations Convention 80 

on Biological Diversity (CBD, http://www.cbd.int/) is perhaps one of the best-known examples, and 81 

presently binds 190 countries to take legislative and policy action to protect at least 10% of the oceans 82 

by 2020. In coastal systems, the main strategy adopted to meet this objective entails the implementation 83 

of regulatory frameworks such as marine reserves (MRs), whose ecological and socio-economic merits 84 

are well established (e.g. Mosquera et al., 2000; Russ et al., 2008; Angulo-Valdés & Hatcher, 2010; 85 

Kerwath et al., 2013; Costello, 2014; Mellin et al., 2016). By contrast, the utility of MRs in pelagic 86 

environments is more contentious, to some degree due to the widespread perception that far-ranging 87 

species require protection over too large a geographic space to be logistically, politically or financially 88 

practical to implement or enforce (Game et al., 2009; Kaplan et al., 2010; Wilhelm et al., 2014). Such 89 

assumptions, however, rarely account for heterogeneous population structuring (e.g. Grewe et al., 90 

2015), partial migration, residency, site fidelity, philopatry (Chapman et al., 2015) or predictable 91 

aggregative behaviour in upper-trophic level organisms (Hueter et al., 2005; Barnett et al., 2012; Fontes 92 

et al., 2014; Kessel et al., 2014; Werry et al., 2014; Queiroz et al., 2016). There is now a growing 93 

consensus that even mobile predators with extensive home ranges such as seabirds (Young et al., 2015), 94 

cetaceans (Gormley et al., 2012), turtles (Scott et al., 2012), fishes (Kerwath et al., 2009) and sharks 95 

http://onlinelibrary.wiley.com/doi/10.1111/geb.12619/abstract

https://www.nespmarine.edu.au/document/continental-scale-hotspots-pelagic-fish-abundance-inferred-commercial-catch-records



	

5 
	

(Salinas de León et al., 2016) can benefit from spatial closures (Claudet et al., 2010; Jensen et al., 2010; 96 

Breen et al., 2015), especially where these strategically encompass core habitat areas or sites where key 97 

life-cycle events perennially occur (Diamond et al., 2010; Breen et al., 2015; Graham et al., 2016).  98 

Sparse ecological data in remote offshore waters (Butler et al., 2010; Webb et al., 2010) make the direct 99 

identification of such hotspots difficult, and call for robust surrogates of biological diversity to predict, 100 

delineate and prioritise candidate sites for zoning (Harris & Whiteway, 2009; McArthur et al., 2010). 101 

Complex topography has been recognised as a determinant of wildlife dynamics across numerous taxa 102 

(Bouchet et al., 2015; Lawler et al., 2015), which suggests that locating protected areas over sites of 103 

rugged terrain could yield a range of conservation gains (Harris & Whiteway, 2009; Michael et al., 104 

2014). Worm et al. (2003), Morato et al. (2008) and Morato et al. (2010) illustrated this possibility in 105 

the open ocean by showing that North Atlantic and Pacific seamounts were important centres of 106 

taxonomic richness of special interest for the management of threatened vertebrates. The idea that static 107 

topography could be used as a blueprint for ocean planning may be widely applicable but has yet to be 108 

investigated in other ocean basins and for different types of geomorphologies. Submarine canyons, for 109 

instance, are prominent and commonly occurring physical seabed features throughout the world’s 110 

oceans. While their role as drivers of primary productivity, plankton abundance and benthic biomass is 111 

well documented (e.g. Genin, 2004), our understanding of their importance to pelagic megafauna 112 

remains nascent, and somewhat skewed towards mammalian vertebrates (Hooker et al., 1999; Fiori et 113 

al., 2014; Moors-Murphy, 2014).  114 

Here, we combine a long-term fishing dataset from the Sea Around Us Project (SAUP, 115 

http://www.seaaroundus.org; Pauly, 2007) with a recent reclassification of Australian submarine 116 

canyons (Huang et al., 2014) to (1) determine the location of abundance hotspots for a suite of 117 

commercially important predatory pelagic fishes within the western part of Australia’s exclusive 118 

economic zone (hereafter ‘wEEZ’); (2) examine associations between these hotspots and an array of 119 

abiotic variables (including seabed topography) on a continental scale; and (3) assess their spatial 120 

congruence with a subset of Australia’s 3.1 million km2 national network of Commonwealth Marine 121 

Reserves (http://www.environment.gov.au/topics/marine/marine-reserves). 122 
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METHODS  123 

Nomenclature 124 

Despite urgent calls to expand global MR coverage (O'Leary et al., 2016), a single and universally 125 

agreed definition of marine reserves under international law is still lacking (Techera & Troniak, 2009). 126 

In practice, virtually any intertidal or subtidal area subject to one or more regulations can qualify as a 127 

reserve, and both the label and its acronym are used in contrasting and sometimes opposing ways in 128 

different parts of the world (Ballantine, 2014). Confusion is exacerbated by the wide spectrum of 129 

activities that are permissible in MRs as well as the increasing establishment of patchwork “multiple-130 

use” reserves in which permanent no-take zones adjoin areas afforded either partial or no protection. 131 

This is the template in place in Australia, and accordingly what the term “MR” refers to throughout. 132 

Note, however, that at the time of writing statutory management plans for Australian MRs are still in 133 

development following an independent scientific review of the national network 134 

(https://www.environment.gov.au/marinereservesreview/). The zoning scheme described herein is 135 

suspended and subject to change. Importantly, the strictly no-take marine national parks (MNP, IUCN 136 

category II) and sanctuaries (IUCN category Ia) currently grant no on-ground protection. 137 

Fish and environmental data 138 

Annual commercial fishing records for the wEEZ were extracted from the quality-checked databases 139 

compiled by SAUP. Landings (in tonnes) originated primarily from yearly catch reports (corrected for 140 

discarded bycatch) produced by the Food and Agriculture Organization (FAO) (Watson et al., 2005; 141 

see Appendix S1 in Supplementary Information). Effort statistics were obtained from an array of public 142 

domain sources (Watson et al., 2013) and were standardised to a common unit of vessel engine power 143 

and operation time (kilowatt sea days, kwsd), following Anticamara et al. (2011). Both catch and effort 144 

were disaggregated into a grid system of 0.5° (latitude) x 0.5° (longitude) spatial cells using a rule-145 

based algorithm (see Watson et al. (2004) and Watson et al. (2013) for technical details). The full 146 

dataset spanned the period 1950-2006 and comprised 5,640,222 entries from 111 species and taxa, 147 
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representing a total catch of 3.11 million tonnes extracted over 3.35 million km2 of the eastern Indian 148 

Ocean between 93-129°E and 8-39°S. 149 

We also collated a biophysical dataset composed of 51 variables computed over the same half-degree 150 

square cells as the fisheries data (Tables 1 & S1 in Supporting Information). We chose variables that (i) 151 

are thought or known to be functionally or ecologically relevant to mobile pelagic fishes and (ii) 152 

exhibited low levels of multicollinearity (Spearman rank coefficient |ρ| < 0.75, see Fig. S1 in Supporting 153 

Information). The majority of these variables were geomorphometrics (measures of seabed complexity, 154 

n=20) assembled from existing archives curated by Geoscience Australia 155 

(http://www.ga.gov.au/search), including a newly revised digital catalogue of submarine canyons 156 

(Huang et al., 2014). Recognising both the importance of meso-scale hydrographic features to mobile 157 

megafauna and the potential for human activities to cause shifts in predator distributions (Maxwell et 158 

al., 2013), the dataset also comprised oceanographic factors (n=14; Tables 1 & S1) as well as indices 159 

of cumulative anthropogenic stress (n=3; Tables 1 & S1).  160 

Data processing 161 

Our step-wise approach to data preparation and analysis is illustrated in Fig. 1, and a brief description 162 

of each step follows below. Analyses were carried out in R 3.0.2 and Matlab 2012a. 163 

Gear matching 164 

We allocated every fishing gear type from the independent catch and effort datasets to one of five 165 

discrete and mutually exclusive categories (Fig. S2), and used this classification to pair landings with a 166 

corresponding value of effort for all combinations of year x grid cell (Appendix S1). 167 

Filtering 168 

We filtered the data to generate a time series spanning the period 1997-2006 as we surmised that catch 169 

reporting was likely more transparent and less prone to bias in recent years. We also excluded grid cells 170 

situated outside the continental wEEZ (i.e. those surrounding Christmas Island and the Cocos Keeling 171 
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Islands), and all demersal or bentho-pelagic animals (Appendix S1 and Table S2). Unidentified records 172 

were discarded, and those for families and genera were reapportioned to confirmed species in proportion 173 

to their relative contribution to the total family- or genus-specific catch. Finally, gears contributing less 174 

than 5% of total landings were omitted, effectively removing all benthic fishing from our study area. 175 

Clear outliers, including particularly small coastal grid cells and exaggerated estimates of effort, were 176 

also excluded (Appendix S1, Table S2). 177 

Geographic partitioning 178 

Spatial non-stationarity can be problematic in statistical models of broad-scale ecological phenomena 179 

as species-environment relationships, and by extension model parameters, may not be constant across 180 

space (Miller, 2012). To control for spatial non-stationarity, we subdivided the consolidated data into 181 

four contiguous bioregions: North, Gascoyne, West and South. These broadly reflected homogeneous 182 

environmental conditions and biological assets (Fig. S3), consistent with management boundaries 183 

recognised by the Western Australian Department of Fisheries (WA DoF, 2013).  184 

Imputation of missing effort data 185 

Addressing missing data has been a long-standing issue in fisheries science, as gaps may distort the 186 

relative trends inferred from catch rate tables (Carruthers et al., 2011). Although the filtered landings 187 

achieved full temporal and spatial coverage with a positive catch value for each grid cell x year 188 

combination, available effort estimates were incomplete and required reconstructing in locations where 189 

none existed (Fig. S4). Watson et al. (2013) proposed a forwards-backwards imputation method where 190 

the average of the five preceding/subsequent years is used, but the underlying assumption that each 191 

ocean square is “independent” of its nearest neighbour is somewhat limiting in a habitat modelling 192 

context as both fishing effort and resource distributions are likely to be spatially and temporally auto-193 

correlated. To circumvent issues of independence, we gap-filled the effort matrix using the smoothn 194 

package (http://www.biomecardio.com/matlab/smoothn.html) introduced by Garcia (2010), which 195 

applies penalised regression to smooth evenly-gridded data in multi-dimensional space. The algorithm 196 

was executed on a 3D space-time cube (year x latitude x longitude) of effort values, summed across 197 
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fishing gear types due to data scarcity in some grid cells (Fig. S5). After imputation, effort predictions 198 

were re-allocated to all gears proportionally to their original usage rate in (i) each cell x year (when 199 

cell-level data existed) or (ii) the bioregion as a whole (when cell-level data were missing). 200 

Catch rate standardisation 201 

Landings only reflect the portion of a stock that is vulnerable to capture, and a complex suite of factors 202 

may affect catchability, directly (e.g. crew number, in-hull storage capacity, fleet composition, gear 203 

efficiency and saturation, species life-histories and age or size-related vulnerability) or indirectly (e.g. 204 

climatic forcing, information sharing between fishers) (Salthaug & Aanes, 2003; Killen et al., 2015). 205 

The use of fisheries-dependent data for ecological inference thus hinges on standardising catch rates to 206 

control for confounding elements that may obscure underlying population signals. We constructed 207 

lognormal generalised linear models (GLMs) to standardise total catch values for each bioregion across 208 

year, fishing gear category, species body mass, and grid cell (Fig. S6). A subset of nine plausible models 209 

was considered and competing formulations ranked based on their second-order (corrected) Akaike’s 210 

information criterion scores (AICc, Table 2). Cell terms were fixed as explanatory variables but their 211 

interaction with year was not considered owing to the paucity of records on a per year and cell basis. 212 

Finally, individual grid cell effects (their coefficients) from the model with lowest AICc were converted 213 

to canonical form (Francis, 1999) and exponentiated to extract relative abundance indices. 214 

Random forests 215 

We gauged quantitative relationships between predictor variables and abundance indices using random 216 

forests (Breiman, 2001). This machine learning technique has been proven to have superior predictive 217 

performance relative to traditional regression models of biota distributions (e.g. Huang et al., 2011) due 218 

to its capacity to handle complex nonlinear trends, especially when the number of predictors (p) is 219 

relatively large compared to the number of samples (n). We used the party R package to construct nt = 220 

10,000 unbiased conditional inference trees of fish abundance in each bioregion (Strobl et al., 2007). 221 

Owing to the nature of the available environmental data, the relative importance of each predictor was 222 

evaluated by unconditional permutation. Whilst such an approach is not optimal, it can be shown that 223 
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the greater the number of splitting variables (mtry) available at each node, the more the behaviour of 224 

the standard measure of importance resembles that of the conditional and more robust version (Strobl 225 

et al., 2008). We ran models using both (i) the full environmental dataset and (ii) the geomorphometrics 226 

dataset only, with mtry ≈ p/2, and verified the stability of the algorithm by comparing the outputs from 227 

three runs with different seeds for the random number generator (Strobl, personal communication). We 228 

also developed partial dependence plots to visualise the effects of the top-scoring predictors using 229 

package edarf (https://github.com/zmjones/edarf).  230 

Hotspot detection and mapping 231 

Bartolino et al. (2011) describe how a 45° tangent to the cumulative relative frequency distribution of 232 

a variable of interest can be drawn to mark its corresponding hotspot areas. Instead of empirically 233 

approximating tangents from pairs of adjacent points, we adapted this approach by fitting the parametric 234 

non-linear species-area functions described by Tjørve, 2003 and Dengler (2009) (Appendix S1) to the 235 

abundance indices and deriving tangent intersections by numerically solving the curves’ first derivative 236 

equations (Fig. S7). Asymptotes were fixed at a value of one in all scenarios (as per theoretical 237 

requirements), and the model with the lowest AICc was selected as the best model (Table S3). 238 

Finally, we matched hotspots with individual MRs and measured their spatial congruence using 239 

Jaccard’s similarity coefficient J (Real & Vargas, 1996; Warman et al., 2004), which ranges from 0 240 

(complete dissimilarity) to 1 (complete match) and is down-weighted by the size of non-overlap areas 241 

such that J = A/(A+B+C), with A the number of hotspot cells within reserves, B the number of reserve 242 

cells empty of hotspots, and C the number of hotspot cells outside reserves. We used null models to 243 

determine the probability of obtaining these patterns by chance, with the null expectation that hotspots 244 

could occur anywhere within each bioregion (Tittensor et al., 2010). Following Leroux et al. (2007), 245 

we randomly selected without replacement the same number of grid cells as identified hotspots, 246 

calculated J and reiterated this permutation 10,000 times. We then compared the simulated distribution 247 

of Jaccard indices to the corresponding observed values via Z-tests. The same steps were followed to 248 

quantify overlap with MNPs. 249 
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RESULTS 250 

Fish landings and abundance indices 251 

The catch data consisted of 22 pelagic species (21 teleosts, one elasmobranch), of which 12 are highly 252 

migratory (Annex I of the 1982 Convention on the Law of the Sea, Table S4). Mackerels and tunas 253 

dominated, with six species (Katsuwonus pelamis, skipjack tuna; Thunnus maccoyii, southern bluefin 254 

tuna; Thunnus albacares, yellowfin tuna; Thunnus obesus, bigeye tuna; Scomberomorus commerson, 255 

narrow-banded Spanish mackerel; and Trachurus declivis, greenback horse mackerel) making up nearly 256 

75% of all landings over the ten years of the study. Northern fisheries contributed nearly twice as much 257 

to total catches (37%) as those operating in other bioregions (18% Gascoyne, 23% West, 22% South). 258 

Catch standardisation models for the North and South bioregions returned the highest adjusted R2 (0.355 259 

and 0.391 respectively), while models for the Gascoyne and West bioregions explained less of the 260 

deviance (adjusted R2 of 0.263 and 0.173, respectively) (Table 2). Relative abundance indices ranged 261 

from 0.00802 to 28.25, with maximum values reported in the North bioregion (interquartile range ca. 262 

twice as high as elsewhere in the wEEZ). 263 

Pelagic hotspots 264 

Three regions of elevated fish abundances (i.e. clusters of hotspot cells) could be reliably identified 265 

(Fig. 2). One region was situated in the north, starting at Barrow Island, branching south along the 266 

Ningaloo Reef peninsula down to Shark Bay, and stretching in a north-east direction across part of the 267 

Exmouth Plateau, along the Rowley Terrace and Wombat Plateau. A second was identified in the south-268 

west, extending from the Perth Canyon north to Jurien Bay and south to Geographe Bay and Cape 269 

Leeuwin, as well as over some parts of the Naturaliste Plateau. The third was located along the south 270 

coast from the Bremer Basin east to the western half of the Great Australian Bight. 271 

Random forest models built on the full set of biophysical predictors explained between 64-82% of the 272 

out-of-bag variance (R2) in fish abundances (Appendix S1 and Table 3). Narrowing the set of splitting 273 

variables to geomorphometrics led to little loss of predictive power, with the reduced models still 274 
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accounting for more than 50% of the variance. The important environmental predictors identified by 275 

the models also varied across bioregions (Fig. 3). For example, canyon distribution (i.e. canyon 276 

presence in both focal cells, CAN, and neighbouring cells, CANadj) was the top-ranked parameter in 277 

the North bioregion and among the first five variables in the South bioregion. However, it had a 278 

negligible effect in the clearly oceanography-driven systems of the West and Gascoyne bioregions 279 

where salinity (SAL) and ocean energy (L3) emerged as the most influential pair (Fig. 3). Likewise, 280 

canyon heads (CANhead) and canyon size (CANpercent) were poor predictors of fish abundance in 281 

regions other than the North, and geodiversity (FEATCOUNT) only received a high importance score 282 

in the West bioregion. Despite these discrepancies, however, measures of static topographic complexity 283 

(including canyon attributes) comprised 35% of the top 10 splitting variables on average, with some 284 

metrics such as rugosity (RUG), dominant geomorphic feature (FEATdom) and to a lesser extent fractal 285 

dimension (FRD) and contour index (CI) appearing in recurrently prominent positions. By contrast, the 286 

frequency of chlorophyll peak index (FCPI) was of trivial importance in all bioregions, and rarely even 287 

selected. Human presence indicators (Hi, Him, and Hir) were especially dominant in the West, South 288 

and Gascoyne bioregions. 289 

Spatial overlap 290 

Hotspots occupied an area of 484,340 km2 (n=178 cells, i.e. 19.5% of total) and were most abundant in 291 

the South (31% of the cumulative number of hotspots in the entire wEEZ) but most prevalent in 292 

Gascoyne (29% of the number of grid cells in the bioregion) (Fig. 2). In comparison, MR coverage was 293 

796,110 km2 (n=316 cells) and was more prominent in the North (32% of the cumulative number of 294 

reserve cells in the entire wEEZ) but widest in the West (39% of the number of grid cells in the 295 

bioregion). The South bioregion, 25% of which comprises suspended no-take zones, made the largest 296 

contribution to national park area (56% of cumulative total). Congruence was highest in the North 297 

bioregion although Jaccard scores remained generally low (<0.3), suggesting that a substantial 298 

proportion of the MR network does not intersect hotspots (Fig. 4). All Z-tests were significant (null 299 

permutation models, p < 0.01), and hotspots coincided with reserves less frequently than expected by 300 
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chance alone in all bioregions but the North. As a whole, overlap with marine national parks was 301 

significantly lower than with the wider MRs. 302 

DISCUSSION 303 

Our study offers quantitative insights into the occurrence patterns of an assemblage of highly mobile, 304 

pelagic predatory fishes in the eastern Indian Ocean. Prediction maps revealed three large-scale fish 305 

hotspots along the northern, southwestern and southern continental shelves of Western Australia 306 

broadly consistent with findings from previous research. For example, tuna and billfish species richness 307 

peaks in similar parts of the North and Gascoyne bioregions (Trebilco et al., 2011), as does the 308 

behavioural activity of some tiger sharks (Galeocerdo cuvier, Ferreira et al., 2015) and pygmy blue 309 

whales (Balaenoptera musculus brevicauda, Double et al., 2014). These congruent spatial patterns 310 

suggest a potentially common basis to hotspot formation across multiple taxa (Bouchet et al., 2015). 311 

Higher relative abundance was also inferred at a number of discrete sites, confirming their importance 312 

to marine megafauna. These included (i) the seasonally productive Bremer basin, a known foraging 313 

ground for white sharks (Carcharodon carcharias) and killer whales (Orcinus orca), (ii) the waters 314 

adjacent to Shark Bay (Letessier et al., 2013) and (iii) the Ningaloo Reef peninsula (Sleeman et al., 315 

2007). 316 

Importantly, we add to a growing body of literature demonstrating that mobile top predators congregate 317 

at discrete and sometimes perennial sites (Wingfield et al., 2011). As international support for 318 

expanding the world’s marine reserve coverage continues to rise (Singleton & Roberts, 2014), the 319 

hotspot concept may become particularly appropriate in guiding long-term MR placement and focusing 320 

research attention and resources on regions of persistently high ecological value for mobile species 321 

whilst conferring maximum conservation benefits per dollar invested (Myers et al., 2000). Such 322 

information will be crucial as designing reserves is a notoriously difficult task constrained by both the 323 

costs of sampling vast swaths of ocean (Letessier et al., In press), as well as by the necessity to address 324 

a broad gamut of socio-economic and geopolitical interests. Thus far, most extant pelagic MRs have 325 

been established opportunistically (i.e. without a defined scientific basis; Roberts, 2000) and/or 326 
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residually (i.e. where there is little perceived conflict with resource users; Devillers et al., 2015). In 327 

many information-poor settings such as offshore waters, surrogate-based approaches may thus be the 328 

only viable option for improvement (McArthur et al., 2010). If so, the main difficulty will then lie in 329 

identifying both (i) a universally accepted operational definition of what constitutes a hotspot, an 330 

exercise so far thwarted by mixed interpretations (Bouchet et al., 2015; Marchese, 2015), and (ii) 331 

reliable proxies that can predict hotspot locations and possibly their change through time. 332 

Conflicting results from empirical studies have fuelled controversy about the application of abiotic 333 

surrogates to conservation planning scenarios (e.g. Stevens & Connolly, 2004 vs. Rees et al., 2014). 334 

These discrepancies likely stem from unresolved questions regarding the spatial and temporal stability 335 

of surrogate relationships or the effects of data quality and availability on indicator performance 336 

(Mellin, 2015). However, as efforts to test the validity of explanatory variables continue, it will become 337 

easier to draw generalisations and identify those that perform consistently better across ecosystems, 338 

regions and scales (Beier et al., 2015b; Sutcliffe et al., 2015). Geomorphometrics have generally 339 

remained broadly unvalidated proxies of oceanic biodiversity (though see Worm et al. (2003) and 340 

Morato et al. (2010)) because large portions of the seafloor are yet to be fully mapped and the majority 341 

of submarine canyons around the world are still poorly explored (Huvenne & Davies, 2014). This 342 

suggests that weak correlations between static topography and predator hotspots may, at least 343 

historically, more likely reflect sporadic and uneven sampling than the absence of genuine wildlife-344 

habitat relationships. Syntheses are also beginning to emerge that highlight the value of using 345 

geodiversity to prioritise areas for biological conservation (Beier et al., 2015a). We confirmed this by 346 

showing that geomorphometry can be a good predictor of fish abundance on a macro-ecological scale, 347 

and highlighting several indices of topographic complexity with robust associations with pelagic 348 

biodiversity. That said, not all geomorphometrics were equally important. For instance, consistent with 349 

Huang et al. (2014)’s observations that the Australian margin is both physically and morphologically 350 

heterogeneous, submarine canyon metrics were outperformed in some bioregions but not others. We 351 

see two possible explanations for this. Firstly, the formation and maintenance of open-ocean hotspots 352 

may demand a suite of interacting oceanographic and bio-physical forces that are not associated with 353 
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all canyons (e.g. upwellings, eddies, physical retention of prey; Hazen et al., 2013).	Secondly, some 354 

canyons may only provide favourable conditions for pelagic fish species episodically. If the latter is 355 

true, the relatively coarse temporal and spatial resolution of our data may not have been sufficient to 356 

reveal such variable relationships. This could be the case for canyon heads, which were not retained in 357 

our analysis but are typically reported as biodiversity hotspots sustained by cyclical upwelling events 358 

(Rennie et al., 2009). Similarly, the Oceanic Shoals Commonwealth Marine Reserve (11.5°S, 128.5°E) 359 

was here a cold spot of fish abundance despite records of seasonally elevated pelagic diversity (Nichol 360 

et al., 2013). In order to fully explore the hotspot spectrum and more robustly prioritise candidate areas 361 

for protection, a conceptual shift is warranted whereby hotspots are no longer defined in purely 362 

geographical terms, but are rather mapped in three (latitude, longitude and time) or even four (latitude, 363 

longitude, time and depth) dimensions, with explicit evaluations of their levels of persistence and 364 

intra/inter-annual variability (Diamond et al., 2010; Santora & Veit, 2013). 365 

Assessing the processes underpinning the environmental preferences of wildlife species is a major 366 

challenge in the pelagic realm (Robinson et al., 2011). The trophodynamics and habitat usage of tunas, 367 

billfishes and their relatives prove complex, dynamic and niche-dependent such that species occupying 368 

temperate or tropical eco-regions may exhibit contrasting tolerance for, and responses to, similar 369 

environmental signals (Arrizabalaga et al., 2015). Such non-stationarity is illustrated in the contrasting 370 

partial dependence plots of Fig. 3, and may be mediated, and further complicated. by biotic interactions 371 

of varying intensity and direction across latitudes (Schemske et al., 2009). This helps explain why 372 

temperature, kinetic energy, oxygen and salinity are often seen as important predictors of biogeographic 373 

range but a mechanistic understanding of their influence is often missing in the literature. For example, 374 

the role of salinity, the variable that was the most important in Gascoyne and in the West bioregions, in 375 

determining the occurrence of pelagic species is particularly obscure albeit some evidence exists that 376 

haline fronts may be indirectly linked with reproductive success (e.g. Alvarez-Berastegui et al., 2014), 377 

prey density and therefore favourable foraging areas (e.g. Maury et al., 2001). Remotely-sensed 378 

measurements of ocean colour and their derivatives, such as FCPI, are more readily interpretable, but 379 

may lack explanatory power if the target organisms sit several trophic levels above primary producers 380 
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(Grémillet et al., 2008) and/or track productivity at depth by following the deep scattering layer or 381 

chlorophyll maxima. The prevalence of cumulative human impact measures in the West is unsurprising 382 

as the city of Perth (31.95° S, 115.86°E) concentrates most of the state’s human population. The positive 383 

relationship with fish abundance, however, does point to the susceptibility of pelagic vertebrates to the 384 

global anthropogenic footprint. Indeed, distributional shifts caused by climate change or overfishing 385 

have been documented in several species (Fromentin et al., 2014; Hill et al., 2015), and disentangling 386 

the respective contributions of oceanographic conditions, migratory behaviour, density-dependence, 387 

exploitation levels and population structure to habitat selection will necessitate finer inspections of 388 

catch time series. 389 

Against a backdrop of limited global ocean protection (i.e. presently less than 1% of the world’s seas 390 

has been set aside in no-take sanctuaries; http://www.protectplanetocean.org/)(Costello & Ballantine, 391 

2015), Australia recently scaled up its marine spatial management framework by declaring a national 392 

network of Commonwealth Marine Reserves that occupies more than a third of its entire jurisdiction 393 

(ca. 3.1 million km2). This areal coverage is exceptional by international standards, however the reserve 394 

system, in its current form, provides relatively low levels of protection equality across habitats and 395 

bathymetric classes (Barr & Possingham, 2013). For instance, albeit 36% of Australian canyons now 396 

intersect the network (wholly or in part, Huang et al., 2014), merely 10% overlap (wholly or in part) 397 

sanctuary/national park areas and are therefore at least only partially safeguarded from anthropogenic 398 

activities. In the wEEZ, this equates to 11 small (i.e. average centreline length ± 1SD of 13.2 ± 6.0 km) 399 

and remote (i.e. average distance from coastline of 291.9 ± 166.5 km) canyons being fully enclosed 400 

within national parks out of a total of 272. Our analysis demonstrates that other natural assets, namely 401 

hotspots of mobile predatory wildlife, are also significantly under-represented. Whilst the declaration 402 

of the network has been a milestone in Australia’s ecosystem-based approach to conservation, work 403 

remains to be done to ensure the framework in place is ecologically coherent and enables rapid progress 404 

towards the new target set by the International Union for the Conservation of Nature (IUCN) 2014 405 

Sydney World Parks Congress to have at least 30% of ocean environments afforded strict protection 406 

within the next fifteen years. Of course, marine reserves are just one piece in the conservation jigsaw 407 
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and do not constitute a blanket solution to the problem of declining fish populations and biodiversity 408 

loss. However, they complement management efforts focused on setting and enforcing sustainable 409 

exploitation levels, controlling illegal fishing, mitigating pollution, decreasing reliance on destructive 410 

gear, and reducing bycatch rates (Allison et al., 1998; Breen et al., 2015). We also recognise that the 411 

mission statement of the world’s protected area portfolio has expanded far beyond the original 412 

objectives the first reserves were created to fulfil in the early 1900s. Today, MRs are not only promoted 413 

as a means of preserving iconic wildlife/seascapes, but also help bolster national economies, increase 414 

tourism, support the livelihood of local communities, replenish depleted stocks, and provide resilience 415 

in the face of environmental change (Watson et al., 2014). The relevance of MRs for pelagic species 416 

will therefore need to be balanced against these and numerous other goals. 417 

CONCLUDING STATEMENT  418 

We provided empirical evidence that geomorphometrics can be meaningful proxies of macro-ecological 419 

patterns in pelagic marine species, a notion long suspected to be true but seldom comprehensively tested 420 

(with some exceptions; e.g. Worm et al., 2003; Morato et al., 2010). We also added to a body of 421 

literature suggesting that landing statistics can be instructive in a biogeographical context (Zainuddin 422 

et al., 2006; Froese et al., 2012; Reygondeau et al., 2012), provided they are handled with care, 423 

transparency, and a thorough understanding of their theoretical and practical limitations. This is critical 424 

as these data represent some of the most spatially and temporally extensive sources of information in 425 

existence for a majority of marine organisms (Maunder et al., 2006), making them relevant as an input 426 

to spatial planning within the data-limited pelagic ocean. Importantly, we showed that significant 427 

opportunities to advance existing conservation frameworks await within national waters. The 428 

establishment of a global “hotspot repository” (Hazen et al., 2013), in particular, constitutes an essential 429 

step in developing a robust and flexible system of ocean management. When harnessed in combination 430 

with topographic data, historical fishing records may be useful for mapping such hotspots at broad 431 

resolutions, and subsequently guiding smaller-scale, dedicated surveys that can assist the effective 432 

placement and designation of marine reserves.  433 

434 
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TABLES 796 

Table 1. Summary of explanatory variables. Only the top 15 random forest predictors from each bioregion are shown (Fig. 3). See Table S1 in the 797 

Supplementary Information for the full list. Geomorphometrics encompass both “bathymetric / topographic” and “geologic” parameters. 798 

VARIABLE NAME UNIT STATE ECOLOGICAL INTERPRETATION 

Bathymetric / topographic 

CI Contour index  d.u. Static 
Vertical circulation and mixing, eddy formation, prey refugia, prey 
entrapment 

CRS Cross-sectional curvature  rad.m-1 Static 
Vertical circulation and mixing, eddy formation, prey refugia, prey 
entrapment 

FRD Fractal dimension  d.u. Static 
Vertical circulation and mixing, eddy formation, prey refugia, prey 
entrapment 

LSRI Land surface ruggedness index  d.u. Static 
Vertical circulation and mixing, eddy formation, prey refugia, prey 
entrapment 

RUG Rugosity  d.u. Static 
Vertical circulation and mixing, eddy formation, prey refugia, prey 
entrapment 

Geologic 

CAN 
Presence/absence of one or more 
submarine canyons  

d.u. Static Breeding/spawning habitat, migration cue, prey availability 

CANpercent 
Percentage of grid cell area 
occupied by submarine canyons  

% Static Breeding/spawning habitat, migration cue, prey availability 
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CANhead 
Presence/absence of one or more 
canyon heads  

d.u. Static Productivity (upwelling), food availability, feeding ground 

CANadj 
Number of adjacent cells containing 
submarine canyons  

d.u. Static Population connectivity, larval dispersal 

CANdepth 
Maximum canyon depth within a 
cell  

m Static Prey availability, breeding/spawning habitat 

FEATcount 
Number of distinct geomorphic 
features within a cell  

d.u. Static Prey and habitat diversity 

FEATdom Dominant geomorphic feature class  d.u. Static Prey availability, breeding/spawning habitat 

Oceanographic 

CUREW East-west current velocity  m.s-1 Dynamic 
Nutrient inputs, oxygenation, enhanced productivity, larval drift and 
juvenile recruitment 

CURNS North-south current velocity   m.s-1 Dynamic 
Nutrient inputs, oxygenation, enhanced productivity, larval drift and 
juvenile recruitment 

FFD 
Daily sea surface temperature 
frontal frequency  

% Dynamic Food availability, migration cue 

L2 Regional circulation regimes  d.u. Dynamic Eddy formation, enhanced primary and secondary production 

L3 Ocean energy  d.u. Dynamic Prey availability, breeding habitat, feeding success, larval growth rates 

MIX Mixed layer depth  m Dynamic Prey availability, physiological tolerance, oxygen availability 

PP Annual mean primary production  
mg C.m-

2.d-1 
Dynamic Prey availability 
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PPstd 
Standard deviation of annual mean 
primary production  

mg C.m-

2.d-1 
Dynamic Prey availability 

SAL Annual mean salinity at the surface  PSU Dynamic Prey availability, physiological tolerance, hatching rate 

SSTstd 
Standard deviation of sea surface 
temperature  

°C Dynamic Spawning cue, breeding habitat, metabolic stress 

WAT Water mass at surface  d.u. Dynamic Prey availability, physiological tolerance 

Anthropogenic 

Hi Mean cumulative human impact  d.u. Dynamic Mortality, sub-lethal disturbance, displacement 

Hir 
Range of cumulative human 
impacts  

d.u. Dynamic Mortality, sub-lethal disturbance, displacement 

Him 
Maximum cumulative human 
impact  

d.u. Dynamic Mortality, sub-lethal disturbance, displacement 

 799 
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Table 2. Model selection summary from the GLM standardisation of pelagic fish catch rates. The best model (with minimum second-order Akaike 800 

Information Criterion AICc and maximum adjusted R2) is shown in bold. ΔAICc quantifies the difference in AICc score between the current and best models. 801 

α is the intercept, ε is the residual variation, log(E) and log(A) are offset terms for fishing effort and water surface area respectively, and the standard notation 802 

‘x’ represents all covariate main effects and their associated interactions. Weights are the species-specific values reported in Table S4. 803 

 

  Model formulation 
  

North Gascoyne West South 

ΔAICc Adj. R2 ΔAICc Adj. R2 ΔAICc Adj. R2 ΔAICc Adj. R2 

log(Catch) ~ a + Cell  + Year  x  Gear  x  Weight + log(E) + log(A) + e 0 0.355 0 0.263 0 0.173 0 0.391 

log(Catch) ~ a + Cell  + Year  +  Gear  x  Weight + log(E) + log(A) + e 3,866 0.324 980 0.228 880 0.14 480 0.374 

log(Catch) ~ a + Cell  + Year  x  Gear  +  Weight  +  Dport + log(E) + log(A) + e 4,164 0.321 647 0.24 631 0.149 180 0.384 

log(Catch) ~ a + Cell  + Year  x  Dport  +  Gear  +  Weight + log(E) + log(A) + e 5,065 0.314 854 0.233 969 0.137 459 0.375 

log(Catch) ~ a + Cell  + Year  +  Gear  +  Weight + log(E) + log(A) + e 5,690 0.309 1,112 0.223 1,050 0.134 535 0.372 

log(Catch) ~ a + Cell  + Year  +  Gear  +  Weight  +  Dport + log(E) + log(A) + e 5,690 0.309 1,112 0.223 1,050 0.134 535 0.372 

log(Catch) ~ a + Cell  + Year  +  Gear  x  Dport + log(E) + log(A) + e 12,293 0.3 2,523 0.232 3,410 0.128 6,517 0.196 

log(Catch) ~ a + Cell  + Year  +  Gear + log(E) + log(A) + e 12,437 0.299 2,800 0.222 3,617 0.12 6,532 0.196 

log(Catch) ~ a + Cell  + Year + log(E) + log(A) + e 26,663 0.169 4,855 0.146 3,738 0.116 9,110 0.073 

804 
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Table 3. Predictive accuracy of the random forest models of pelagic fish abundance. Performance is evaluated on the out-of-bag data (see Appendix S1). 805 

RMSE stands for the root mean squared error, and R2 represents the percentage of variance explained. 806 

Input Performance metric Bioregions 

North Gascoyne West South 

All variables RMSE 2.051 0.385 0.559 0.351 

All variables R2 0.644 0.804 0.722 0.823 

Geomorphometrics RMSE 2.321 0.528 0.723 0.50 

Geomorphometrics R2 0.530 0.666 0.516 0.628 

	  807 
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FIGURES 808 

Figure 1. Graphic representation of the grooming and analysis of the Sea Around Us Project (SAUP) data. 809 

810 
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Figure 2. Pelagic fish hotspots derived from the SAUP data. Submarine canyons (Huang et al., 2014; 811 

in black) are overlaid on the predicted spatial patterns in fish relative abundance (displayed on the log 812 

scale). Hotspot locations are marked with white circles and shown relative to the distribution of 813 

Commonwealth Marine Reserves (striped fill). 814 
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Figure 3. Top 10 environmental predictors of highest relative importance in the random forest models. 816 

Canyon attributes appear in black, topographic variables in grey and all remaining predictors in white 817 

(left). Also shown are the corresponding partial dependence plots for the three most influential variables 818 

(right). These display the marginal effects that each term exerts on the response (here normalised to the 819 

[0-1] range in each bioregion to facilitate interpretation) whilst holding all other input variables constant 820 

at their average values. A full list of variable abbreviations is provided in Table 1. 821 
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Figure 4. Congruence between pelagic fish hotspots and marine reserves. Overlap is measured via the 822 

Jaccard similarity coefficient J, which ranges from 0 (no overlap) to 1 (complete congruence) and can 823 

be written as J=A/(A+B+C), with A the area of overlap, B the cumulative hotspot area in a given 824 

bioregion, and C the cumulative area occupied by marine reserves. Observed values are shown as filled 825 

circles, and boxplots capture the distribution of values under a random null model (n=10,000). CMR: 826 

Commonwealth Marine Reserves (all zones), MNP = Marine National Parks (no-take zones only).  827 
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