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Abstract
Large endothermic pelagic sharks are highly migratory and use habitats spanning a broad range of coastal, neritic and oce-
anic areas. This study aimed to resolve the current lack of information on the movements and habitat use of white sharks, 
Carcharodon carcharias, between shelf, slope and oceanic areas located off southwestern Australia. Movement behaviours, 
spatial distribution patterns and vertical habitat use of juvenile, sub-adult and adult white sharks ranging in size from 1.9 to 
5.7 m total length were examined using 43 satellite tags deployed over 15 years. Pop-up satellite archival tags and satellite-
linked radio tags collected 3663 days and > 109,900 km of tracking data over periods of up to 381 days. We demonstrated 
sex-based differences in movement and distribution patterns of male (21) and female (19) white sharks. Female dispersal 
was broader and extended further offshore than males, which largely remained in neritic and gulf habitats. Female white 
sharks experienced a narrower range of water temperatures (F = 9.0–19.0 °C; M = 10.4–24.8 °C). Despite these subtle differ-
ences, both sexes showed an affinity to the Neptune Island Group and the shelf slope canyons of the eastern Great Australian 
Bight, which are productive and oceanographically complex regions that support known prey of white sharks. This study 
highlighted that the southern-western Australian population of white sharks use off-shelf habitat to a greater extent than 
previously identified. Findings have potential implications for: ecological risk assessments of fisheries that operate in these 
offshore habitats and for monitoring and managing marine protected areas.

Introduction

Understanding the variability in movement strategies of 
marine predators at individual, ontogenetic and popu-
lation levels is pivotal in assessing the relative risks of 

anthropogenic activities and underlies the structuring of 
suitable conservation and management approaches to popu-
lations that have undergone historical declines or are conser-
vation dependent (Simpfendorfer et al. 2010). Additionally, 
understanding the behavioural response to variable environ-
ments over a range of spatial and temporal scales may also 
be fundamental to evaluating the habitat requirements of 
populations. White sharks, Carcharodon carcharias, are 
large, circum-globally distributed marine apex predators 
that inhabit temperate and sub-tropical waters (Compagno 
2001). In common with other elasmobranchs, white sharks 
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display several K-selected life history traits that when com-
bined, characterise populations as potentially sensitive to 
the impacts of some marine activities, including incidental 
bycatch in fisheries, trophy hunting to remove body parts 
(e.g. jaws and teeth), as well as ecosystem–level impacts on 
key prey and habitats, e.g. potential changes of vertical and 
horizontal thermal habitats driven by climate change.

Perceived worldwide declines in white shark populations 
have resulted in protection of the species under various inter-
national (Appendix II of Convention on International Trade 
in Endangered Species (CITES) [2005] and Appendix I 
and II of the Convention on the Conservation of Migratory 
Species (CMS) [2010]) and national legal instruments (e.g. 
Environment Protection and Biodiversity Conservation Act 
1999 (EPBC Act), Australia). In Australia, the species is 
listed as ‘vulnerable’ under the Australian EPBC Act (1999) 
and as such, is subject to a recovery plan aimed at rebuild-
ing the population. The species is also protected by State 
fisheries legislation across the southern Australian range. 
The adult component of the southern-western Australian 
(SWA) population was recently estimated to be approx. 
1460 (range 760–2250) (Bruce et al. 2018). However, to 
accurately assess and monitor the status of highly migratory 
species, such as the white shark, it is important to under-
stand ontogenically-related movement patterns to distinguish 
shifts in distribution from apparent changes in population 
structure and abundance.

In Australia, white sharks are broadly distributed through-
out southern waters from North West Cape, Western Aus-
tralia to southern Queensland (Last and Stevens 2009). Pre-
vious white shark tagging studies in Australia have indicated 
most movement patterns are restricted to coastal, continen-
tal shelf or slope waters (Malcolm et al. 2001 (five tags), 
Bruce et al. 2006 (six tags), Bruce and Bradford 2012 (21 
tags)), with limited movement between Australia and New 
Zealand. Research in New Zealand, on the other hand, has 
demonstrated more wide-spread movements across ocean 
basins between New Zealand, tropical Pacific islands and 
Australia (Duffy et al. 2012). However, this remains at odds 
with movement patterns by this species in other areas of 
the world, where white sharks have been found to regularly 
exhibit offshore migratory movements and have spent as 
long as 1.5 years in areas of open ocean that were located 
several thousands of kilometres from the coast. Examples 
of oceanic behavioural stages include migrations by white 
shark in the southwest (Bonfil et al. 2010) and northeast 
Pacific Ocean (Nasby-Lucas et al. 2009) and the northern 
Atlantic Ocean (Skomal et al. 2017).

Most tagging and satellite-based tracking of white sharks 
in Australia, has focussed on juvenile and smaller sub-adult 
sharks in eastern Australia (1.8–3.2 m) and a smaller number 
of larger sub-adults (< 3.8 m) in South and Western Aus-
tralia with relatively few adults tagged. These studies have 

demonstrated that movements of white sharks are restricted 
in their east–west connectivity, leading to a two population 
model for the Australasian region which is supported by 
genetic analyses, acoustic telemetry studies (Blower et al. 
2012; McAuley et al. 2017) and recent genetic assessments 
of kinship throughout Australia and New Zealand (Hillary 
et al. 2018). The two populations are separated east and west 
by Bass Strait with New Zealand and the southwest Pacific 
forming part of the eastern Australasian population (Bruce 
and Bradford 2012; Duffy et al. 2012; Francis et al. 2012). 
This study focusses on the movements and habitat use of 
the SWA white shark population as there is greater uncer-
tainty regarding the ecology of the SWA population of white 
sharks than for the eastern population. In response, we com-
piled available tracking data to examine how the distribution 
of SWA white sharks relates to broad scale habitat features, 
such as depth, distance to the coastline and related habitat 
quantities.

Previous studies (Malcolm et al. 2001; Bruce et al. 2005; 
Robbins and Booth 2012; Bruce and Bradford 2015; Rogers 
and Huveneers 2016) have documented aggregation sites, 
such as the Neptune Islands in South Australia which also 
contains Australia’s largest pinniped colonies (Shaughnessy 
and McKeown 2002). Visits by white sharks to the Nep-
tune Islands show a distinctive seasonal pattern that varies 
between sexes with females, including adults, visiting the 
site almost exclusively during winter, whereas males tend 
to visit all year round (Bruce and Bradford 2015). This led 
these authors to propose that white sharks in southern Aus-
tralia are likely to show seasonal- and sex-specific differ-
ences in their distribution and movement patterns. Account-
ing for differences in movement patterns provides input into 
identifying potential risks of human–shark interactions and 
effective conservation management policy.

We used satellite telemetry data collected from tags 
deployed on juvenile, sub-adult and adult white sharks to 
examine: (1) sex-specific distribution patterns within the 
SWA population; (2) seasonal movements of sub-adult and 
adults, including the extended periods of open ocean travel, 
as observed for white shark populations in other ocean 
basins and (3) evidence of the location(s) of nursery/pup-
ping areas based on the movements of adult females.

Methods

Electronic tags were deployed on white sharks at three loca-
tions across southern Australia from the Doubtful Islands 
(eight tags) in Western Australia (34.37ºS, 119.61ºE) to the 
lower Eyre Peninsula in South Australia (Fig. 1). The major-
ity of tags were deployed within the Neptune Islands Group 
(Ron and Valerie Taylor) Marine Park, located approx. 
60 km south of Port Lincoln, South Australia: 11 tags at 
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South Neptune Islands (35.33ºS, 136.12ºE); 24 tags at North 
Neptune Islands (35.23º S, 136.07º E).

Tags were deployed over a 15-year period between 2003 
and 2017 (Table 1) in a range of projects; the tracking data 
have been compiled for this project. Pop-up satellite-linked 
archival tags (PSATs) were typically configured with a tether 
that consisted of 150–250 mm of 180 kg monofilament or 
plastic coated 2 mm stainless steel multi-strand wire, termi-
nating in either a plastic umbrella style anchor or a titanium 
textured anchor. PSATs were deployed on free-swimming 
white sharks attracted to the vessel using a mixture of 
minced tuna parts, tuna oil and fish blood (berley). Once 
sharks were attracted to the vessel a teaser bait (large portion 
of tuna) was used to draw the shark to the rear of the vessel 
and close enough to apply the tag using a tagging pole.

All PSATs were programmed to release after periods 
from 30 to 180 days after deployment and transmit their 
summarized data through the Argos constellation of satel-
lites (www.argos​-syste​m.org). Each tag was programmed to 
collect ambient light levels, temperature and depth, typically 
at 10 s intervals and pooled into 6 h bins for transmission.

Satellite-linked radio tags (SLRTs) were physically 
attached to the first dorsal fin of sharks which were caught 
and temporarily restrained beside the vessel in a purpose-
built in-water stretcher as described in Bruce et al. (2006) 
and Bruce and Bradford (2013a). Sharks were attracted to 
the tagging vessel using berley, where they were presented 

with a baited hook on a 1.2–1.5 m stainless steel wire rope 
(4–6 mm diameter) leader attached to a 12 mm silver nylon 
rope. On taking the bait, the hook was set and one or more 
30 cm floats attached to the line. The shark was allowed 
to tire itself against the resistance of the float before being 
guided into the in-water stretcher. Upon restraint an oxy-
genated flow of seawater was provided to irrigate the gills. 
Once the SLRT was attached, the hook was removed and the 
shark guided out of the stretcher. Typically, a shark would 
be restrained for no longer than 10 min.

Near-real time position data were available for sharks fit-
ted with SLRTs. These tags transmitted summarised data 
to the Argos system whenever they were exposed to air and 
the position of the tag was estimated using a Doppler shift 
algorithm (www.argos​-syste​m.org). Position estimates were 
provided in seven location quality classes (LC) ranging from 
the lowest to the highest predicted root mean square errors 
of: LC-3 ≤ 250 m, LC-2 250–500 m, LC-1 500–1500 m. 
Location classes LC-0, LC-A, LC-B have predicted root 
mean square errors of > 1500 m and LC-Z has no position. 
Extreme outliers (those indicating unrealistic swimming 
speeds well in excess of 5 kph), positions on land and those 
with unclassified error estimates (LC-Z) were removed. The 
data from all Wildlife Computer pop-off satellite archival 
tags (PSAT) were processed through the Wildlife Computers 
Portal (www.wildl​ifeco​mpute​rs.com); one shark was fitted 
with a Microwave Telemetry PSAT tag; position data were 

Fig. 1   Study region with 
tagging locations marked for 
Western Australia and South 
Australia. GAB Great Austral-
ian Bight

http://www.argos-system.org
http://www.argos-system.org
http://www.wildlifecomputers.com
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Table 1   Satellite tag deployment details

M male, F female, U  unknown sex. All length measurements are reported as total length. N Nept North Neptune Island, S Nept South Neptune 
Island. Date format is DD/MM/YY. Tag manufacturer is denoted as: WC Wildlife Computers; MWT Microwave Telemetry; ST Sirtrack
* = no sensor data available. Ŧdata only available for ~ 22 days between 16 June 2014 and 09 July 2014

Fish ID Length (m) Release region Deploy date Pop-up date Track days Track length (km) Daily dis-
tance (km)

Tag type

WSM-01 3.8 N Nept 31/12/15 23/01/16 23 971 42 WC PSAT
WSF-02 5.0 S Nept 15/07/14 27/08/14 42 2355 56 WC PSAT
WSF-03 4.8 N Nept 07/02/16 06/07/16 149 12,220 82 WC PSAT
WSF-04 3.8 N Nept 23/07/15 01/08/15 8 308 39 WC PSAT
WSF-05 4.6 N Nept 06/08/15 05/11/15 89 6467 73 WC PSAT
WSM-06 3.1 N Nept 15/06/16 13/10/16 120 4813 40 WC PSAT
WSF-07 4.3 S Nept 25/07/15 22/11/15 117 2641 23 WC PSAT
WSM-08 4.0 S Nept 25/07/15 28/07/15 3 74 25 WC PSAT
WSM-09 4.2 N Nept 25/01/16 24/05/16 119 4184 35 WC PSAT
WSM-10 2.7 N Nept 26/07/15 29/07/15 3 68 23 WC PSAT
WSM-11 3.2 N Nept 26/07/15 29/07/15 3 75 25 WC PSAT
WSM-12 3.6 N Nept 17/12/15 10/01/16 23 1200 52 WC PSAT
WSM-13 ? N Nept 07/10/12 06/03/13 149 7028 47 WC PSAT
WSF-14 5.7 S Nept 15/06/13 07/10/13 112 5834 52 WC PSAT
WSF-15 3.5 Doubtful Isl 04/05/03 06/07/03 62 WC PSAT
WSF-16 3.0 Doubtful Isl 04/10/03 25/11/03 51 4085 80 WC PSAT
WSM-17 4.0 N Nept 29/11/12 29/12/12 30 1192 40 WC PSAT
WSM-18 3.5 N Nept 29/11/12 30/11/12 1 WC PSAT
WSF-19 2.8 Doubtful Isl 04/10/03 29/01/04 117 1683 14 MWT PSAT
WSM-20 3.8 N Nept 10/11/04 09/05/05 179 3256 18 WC PSAT
WSM-21 3.2 N Nept 12/11/04 04/05/05 172 3088 18 WC PSAT
WSM-22 4.2 N Nept 23/05/08 11/07/08 48 2219 46 WC PSAT
WSU-23 3.5 N Nept 23/05/08 27/05/08 4 241 60 WC PSAT
WSF-24 4.2 S Nept 02/05/15 10/08/15 98 2711 28 WC PSAT
WSF-25 2.2 S Nept 06/05/15 09/07/15 63 2546 40 WC PSAT
WSF-26 3.0 S Nept 06/05/15 14/08/15 98 4447 45 WC PSAT
WSF-27 4.2 S Nept 06/05/15 14/08/15 98 1715 18 WC PSAT
WSM-28 3.3 S Nept 02/05/15 10/08/15 98 5217 53 WC PSAT
WSF-29 5.2 S Nept 15/07/14 2313 WC PSAT*
WSM-30 3.2 N Nept 27/07/16 24/12/16 147 2314 16 WC PSAT*
WSM-31 2.1 Doubtful Isl 17/08/14 09/10/14 52 WC PSAT
WSF-32 5.2 S Nept 19/04/14 17/09/14Ŧ 22 573 26 WC PSAT
WSM-33 3.2 N Nept 11/11/04 365 3372 9 WC SLRT
WSM-34 3.2 N Nept 13/11/04 92 2438 27 WC SLRT
WSF-35 3.5 N Nept 29/06/06 381 7501 220 WC SLRT
WSF-36 3.0 Doubtful Isl 05/10/03 ST SLRT
WSU-37 ? Doubtful Isl 06/10/03 ST SLRT
WSU-38 ? Doubtful Isl 06/10/03 ST SLRT
WSM-39 3.6 N Nept 30/03/04 162 4031 25 ST SLRT
WSF-40 3.3 N Nept 01/04/04 147 3205 22 ST SLRT
WSM-41 3.8 N Nept 10/11/04 19 635 33 ST SLRT
WSM-42 3.2 N Nept 12/11/04 173 1803 10 ST SLRT
WSF-43 5.1 Doubtful Isl 16/11/17 10/12/17 24 1103 46 WC PSAT
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provided by Microwave Telemetry using their proprietary 
software. All position data were mapped using MapInfo GIS 
(version 7.5) software.

The total distance travelled was estimated using the Con-
nectTheDots tool within the MapInfo software package. 
Average daily displacement was then calculated by divid-
ing the total distance travelled by the number of days at 
liberty, which for PSAT tags was the difference between 
deployment date and pop-up date and for SLRT tags was 
the difference between deployment date and the date of the 
last transmission.

To obtain the depth of ocean at a given point on the 
shark’s track, ETOPO1 bathymetry (Amante and Eakins, 
2009) was queried via the R package “marmap” (Pante 
and Simon-Bouhet, 2013). This package was also used to 
calculate the distance from a point on the shark’s track to 
the 200 and 0 m isobaths. Distance to the Neptune Islands 
(136.1184°E, 35.3174°S) was estimated as the great cir-
cle distance from each point. This distance (which does 
not account for the need to swim around land masses) was 
used as a proxy in the analysis as opposed to calculating the 
total distance a shark would need to travel when estimating 
energy expenditure, for example. All data summaries and 
statistical analysis used R 3.6.1 (R Core Team, 2019).

Results

A total of 43 electronic tags were deployed on white sharks, 
consisting of 33 pop-up satellite archival tags (PSAT) and ten 
satellite-linked radio tags (SLRT). All tags were deployed 
between May 2003 and November 2017. The total lengths 
(TL) of tagged sharks ranged between 1.9 and 5.7 m. Males 
measured from 1.9 to 4.2 m TL (n = 21), females measured 
from 2.2 to 5.7 m TL (n = 19), with three sharks of unknown 
sex, two of which were of unknown length (Table 1).

Satellite tags provided 3663 days of tracking data cover-
ing a total distance in excess of 109,900 km. The number of 
estimated satellite positions from PSATs was 8420 and the 
number of Argos estimated positions from the SLRTs was 
1952. Few PSAT tags remained attached for the entire pro-
grammed time (~ 40%) and four PSAT tags failed to transmit 
any data. The successful PSATs remained attached for peri-
ods ranging from 1 to 179 days. There was no statistical dif-
ference (Welch 2-sample t test, t = 0.154, df = 35, p = 0.878) 
in the number of days tags were attached between male and 
female white sharks.

Movement patterns indicated long-distance dispersal of 
individuals, with the majority of tracks (n = 29) each exceed-
ing an estimated 1000 km in length (Fig. 2). Male white 
sharks moved throughout southern waters, covered a lon-
gitudinal range of ~ 4000 km (112°E–154°E) and an aver-
age track length of ~ 2525 ± 457 km (± SE). Tracks of male 

sharks were confined to southern waters between 22.5°S 
and 42°S. Female white sharks covered broader longitudinal 
ranges (~ 4300 km: 104°E–161°E) than males. The average 
track length of female white sharks was ~ 3630 ± 705 km. 
Tracks of females spanned latitudes between 21°S and 55°S. 
There was no statistical difference (Welch 2-sample t test, 
t = 1.298, df = 27, p = 0.205) in the overall length of tracks 
between male and female white sharks. In addition, when 
standardising tracks to daily displacement (distance/days at 
liberty) there was no statistical difference (Welch 2-sample 
t test, t = 1.833, df = 16.97, p = 0.084) in daily displacement 
between male and female white sharks.

Male white sharks mostly remained within shelf waters 
in depths < 100 m. One male shark (WSM-20) indicated a 
brief period in off-shelf waters to the south of the mid-Great 
Australian Bight. Female white sharks also spent a high pro-
portion of time in shelf waters, but included more time in 
off-shelf waters with occasional dives to depths > 1000 m.

Although in off-shelf waters, all females spent time over 
zones of major bathymetric relief. For example, one sub-
adult female (WSF-5, 4.6 m TL) followed the shelf slope 
edge westwards from the Neptune Islands to the Recherche 
Archipelago off Western Australia between 19 August 2015 
and 30 September 2015 (Austral winter/spring) before turn-
ing south and travelling ~ 1700 km further to intersect with 
the Heemskerk Fracture Zone (Fig. 2). At this point (19 
October 2015) the shark continued in a westerly direction 
parallel to the Southeast Indian Ridge for ~ 1000 km before 
the tag detached.

A second adult female (WSF-3, 4.8 m TL) travelled over 
an estimated distance of ~ 12,240 km, moving eastwards 
from South Australia into the central Tasman Sea between 
14 January 2016 and 6 March 2016 (Austral summer) before 
heading south to sub-Antarctic waters off Macquarie Island 
(55.03°S and ~ 2700 km south of tagging location, 29 March 
2016). After reaching Macquarie Island, the shark returned 
to the region of tagging in mid May 2016 spending ~ 17 days 
over and near the Ninene Trough before following the 
shelf edge westward for a further ~ 2000 km before the tag 
detached in June 2016.

Profiles of the sea surface temperature (SST) experienced 
by female (median = 15.5 °C) and male (17.8 °C) white 
sharks between the latitudes of 30°S and 45°S indicated 
that female white sharks experienced slightly cooler SST 
(Fig. 3a). The data from latitudes further south than 45°S 
were removed to avoid the possibility of skewing the data 
on sea surface temperature experience.

From February through August (Austral late summer, 
autumn and winter) female white sharks consistently occu-
pied waters with a lower sea surface temperature than 
males (Fig. 3b). In the Austral spring, however, (Septem-
ber–October) female white sharks tended to occupy waters 
with a higher SST than males. Unfortunately, there are no 
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temperature data for female white sharks for the months 
of December and January.

Male white sharks spent more time in shelf waters 
(Fig. 2), with the distance to the 200 m isobath (shelf 
break) greatest in the head of the Great Australian Bight 
(GAB, Fig. 4a). When the outliers are excluded, female 
white sharks tended to remain closer to the 200 m isobath 
(Fig. 4a). During the late Austral autumn/winter period 
both sexes aggregated in the vicinity of the Neptune 
Islands (Fig. 4b). No data, including immediately follow-
ing tagging, were excluded in this analysis of broad sea-
sonal patterns.

In the upper 200 m of the water column, there was no 
difference in the proportion of time either sex spent at depth 
(Fig. 5a); with both sexes spending the majority of their time 
in the upper 50 m. For male white sharks, the total propor-
tion of time spent in warmer water was greater than that for 
females (Fig. 5b). This appears to be driven by the amount 
of time males spend in shelf waters of the upper GAB, as 
illustrated by the extended right tail of Fig. 5b.

Fig. 2   Combined tracks of white sharks, Carcharodon carcharias, 
tagged in south-western Australian waters with female sharks in 
red, male sharks in blue and sharks of unknown sex in black. Insert 

provides greater detail where there is a high degree of overlapping 
tracks. A coloured digital elevation model illustrates the bathymetry 
of the study region

Fig. 3   a Sea surface temperature (°C) profile for all data points 
grouped by sex (n); b Sea surface temperature (°C) experiences of all 
sharks grouped by month and sex. All box plots indicate the median 
(solid horizontal line within the box), the box indicates the sample 
median (solid line) and the whiskers indicating the extent of the first 
and third quartile
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Pop-up archival transmitting tag data demonstrated that 
white sharks of both sexes experienced a wide temperature 
range (females 9.0–19.0 °C; males 10.4–24.8 °C) with a high 

degree of overlap between the sexes. The PSAT data also 
demonstrated that white sharks spent 50% of their time in 
waters ≤ 200 m depth. Looking more closely at the tempera-
ture data for when white sharks are in depths ≤ 200 m there 
was a tendency for females to spend more time in cooler 
waters, as well as displaying a distinctive two-peak profile 
(Fig. 6). Males, on the other hand, tended to spend more 
time in warmer waters and displayed a broader profile in 
overall temperature experience.

Discussion

This study provides new evidence of diverse on-shelf and 
off-shelf oceanic movements and expansive depth and ther-
mal habitat use by the SWA population of white sharks in 
the South-east Indian Ocean. Satellite tagging conducted 
over 15 years showed white sharks ranged widely through-
out southern Australia, with subtle differences in the disper-
sal patterns of males and females. A feature differentiating 
this dataset from previous studies of the SWA population 
(Bruce et al. 2006) is the extended offshore movements by 
two individuals WSF-03 and WSF-05, including the expan-
sive oceanic transits into sub-Antarctic waters. Potential 
explanations of oceanic transits have been the subject of 
several studies in the Northern Hemisphere (Pacific Ocean), 
yet telemetry technologies applied to pelagic sharks limit 
the ability to directly link observed datasets to ecological 
variables. New configurations of equipment incorporating 
telemetry devices, accelerometers and cameras are currently 
being trialled to uncover the motivating factors for these 
oceanic transits.

In light of the globally high public profile of white sharks, 
efforts to study and understand their basic life history and 
ecology, such as their movements and the extent to which 
they use the environments through which they move, have 
increased. Previously, white sharks in the Australian region 
had been characterised predominantly as shelf inhabit-
ants (Bruce et al. 2006; McAuley et al. 2017). However, 
the recent evidence has identified some white sharks in this 

Fig. 4   a Distance (km) of position estimates to the 200 m isobath for 
all sharks grouped by sex (n); b distance (km) of position estimates 
to the Neptune Islands, South Australia grouped by sex. All box plots 
indicate the median (solid horizontal line within the box), the box 
indicates the sample median (solid line) and the whiskers indicating 
the extent of the first and third quartile

Fig. 5   a Proportion of time spent at depth (m) for all sharks grouped 
by sex with female sharks in red, male sharks in blue; b Proportion of 
time spent at temperature (°C) for all sharks grouped by sex. The line 
through the data is a Friedman’s super smoother implemented in the 
R function “supsmu” (Friedman 1984)

Fig. 6   Density plot of temperature (°C) data points for all pop-up 
archival transmitting tags (PSAT) grouped by sex with female sharks 
in red, male sharks in blue
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region making extended oceanic excursions and crossing 
ocean basins (Bruce et al. 2006; Bonfil et al. 2010; Bruce 
and Bradford 2012; Duffy et al. 2012). This study has dem-
onstrated that within the SWA white shark population the 
use of off-shelf and slope waters is greater than previously 
thought; however, female white sharks may make greater use 
of off-shelf waters than their male counterparts.

Excursions into the higher latitudes in both the southern 
(off-shelf) and northern (on-shelf) hemispheres have pre-
viously been recorded. For example, Francis et al. (2012) 
tracked a 4.4 m female white shark that travelled ~ 450 km 
south of New Zealand to the vicinity of the Auckland 
Islands (50.7°S) and reported sightings of white sharks at 
the Campbell Islands (52.6°S, 169.2°E), ~ 650 km south of 
New Zealand. In the North-west Pacific white sharks have 
been recorded from waters of ~ 46.5°N (Christiansen et al. 
2014), in the North-east Pacific from ~ 60.3°N (Martin 2004; 
COSEWIC 2006) and in the North-west Atlantic as far north 
as ~ 51.3°N (COSEWIC 2006).

Based on the existing literature and the present study, 
no conclusions can be drawn with respect to the distribu-
tion of sexes at the northern and southern extremes of the 
white sharks’ range. Observations of both sexes have been 
recorded at the extremes of their distribution. In the North-
west Pacific, the most northern observation was of a male 
white shark (Christiansen et al. 2014). In the North-east 
Pacific a 6 m white shark was recorded at ~ 59.5°N, however, 
sex was not recorded (Martin 2004). While in the North-
west Atlantic very few reports contained the sex of the 
animal observed (COSEWIC 2006). In the southern hemi-
sphere, both Francis et al. (2012) and the present study have 
observed female white sharks at the most southern extremes, 
suggesting mature females may roam more widely and expe-
rience greater fluctuations in temperature.

White sharks WSF-3 and WSF-5 both made exten-
sive excursions into off-shelf waters where at times there 
appeared to be an affinity to major bathymetric features such 
as the Ninene Trough and Heemskerk fracture zone. Francis 
et al. (2012) also noted an association between the tracks of 
white sharks and bathymetric features such as the Solandar 
Trough. Further, Domeier (2012) reported on a sub-adult 
male white shark that criss-crossed a fracture zone in the 
mid-Pacific during an extended offshore migration towards 
the Hawaiian Islands and the Shared Offshore Foraging Area 
(SOFA). Fracture zones represent regions of high magnetic 
anomaly against a background of bands of highs and lows 
parallel to the axis of mid-oceanic ridges (Kirschvink et al. 
1986). Although the mechanisms by which animals detect 
and process the earth’s magnetic field are poorly under-
stood, there are examples from all classes of vertebrates 
indicating a capacity to use the earth’s magnetic field to 
guide their long-distance migrations (Lohmann and John-
sen 2000). Evidence exists that several shark species use the 

earth’s magnetic field for navigational purposes (Carey and 
Scharold 1990; Holland et al. 1999; Meyer et al. 2005). For 
example, Klimley (1993) found the movements of scalloped 
hammerhead sharks (Sphyrna lewini) were guided by anom-
alies in the earth’s magnetic field as they moved between 
a seamount and their pelagic foraging areas. Hammerhead 
sharks appeared to be using local maxima and minima in 
the geomagnetic field as movement corridors when in the 
pelagic environment, with the strong dipole magnetic field 
around the seamount serving as a beacon facilitating their 
return (Klimley 1993). Kirschvink et al. (1986) postulated 
that marine animals may seek geomagnetic minima during 
periods of migration, while using geomagnetic highs to pin-
point foraging areas such as marine canyons and seamounts. 
While the data in this study are restricted to two notable 
examples of off-shelf movements and the association with 
major bathymetric features is striking, the reasons for this 
association by SWA white sharks are unknown.

Australia’s continental shelf has ~ 423 submarine can-
yons (Heap and Harris 2008), with the southeastern coast-
line having the largest concentration and coverage of Aus-
tralia’s marine canyon systems (Huang et al. 2014). Most 
are located along the lower shelf/upper slope (Huang et al. 
2014; Conlan et al. 2015) and are characterised by valleys, 
plateaus and ridges supporting upwelling, downwelling 
and other current-driven processes (Middleton and Cerano 
2002; Middleton and Bye 2007). Combinations of produc-
tive demersal communities (Williams et al. 2001; Currie 
and Sorokin, 2014) and fluctuations in pelagic production 
(McClatchie et al. 2006) along these shelf edges may partly 
explain the use of these canyon habitats by a range of migra-
tory marine predator species, including white sharks. The 
majority of the tracks of male and female white sharks in 
this study indicated varying degrees of fidelity to the lower 
shelf/upper slope systems. The recent findings have found 
the shelf-incising Murray Canyons Group (Schmidt et al. 
2010) located south of Kangaroo Island to support high 
concentrations of southern bluefin tuna (Thunnus maccoyii) 
which are thought to be linked to high densities of sardine 
(Sardinops sagax), Australian anchovy (Engraulis australis) 
and other small pelagic prey present in the region (Conlan 
et al. 2015). Field observations during pelagic surveys have 
also identified large aggregations of pinnipeds, cetaceans 
and other species of pelagic sharks at the head of the du 
Couedic Canyon south of Kangaroo Island (Rogers et al. 
2016). The southern and western coasts of Kangaroo Island 
and the Neptune Islands Group have significant pinniped 
colonies (Shaughnessy et al. 2011) that may form stop-off 
points for white sharks as they migrate to and from on-shelf 
and off-shelf oceanic regions. Future studies could inves-
tigate the significance of these offshore canyon habitats in 
terms of the relative residency of white sharks in these as 
compared to other marine protected areas.
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In this study, observed off-shelf excursions were mainly, 
but not exclusively, restricted to female white sharks. Off-
shelf excursions by male and female white sharks are well 
documented within the eastern Pacific white shark popula-
tion. White sharks have been tracked from the central Cali-
fornia region to Hawaii (Boustany et al. 2002; Weng et al. 
2007; Jorgensen et al. 2010); while sub-adult and adult 
white sharks tagged at Guadalupe Island off Mexico have 
been tracked to the SOFA in the central Pacific between 
the continental United States and Hawaii (Domeier and 
Nasby-Lucas 2008; Nasby-Lucas et al. 2009). In the Atlan-
tic Ocean, a mature-sized (5.3 m) female travelled over 
6000 km and occupied pelagic oceanic habitats (Skomal 
et al. 2017). Potential explanations for these movements 
have included prey searching (Domeier 2012; Duffy 
et al. 2012) and reproductive behaviours (Jorgensen et al. 
2010, 2012). However, apart from two notable examples 
by mature females, all of the white sharks tracked in this 
study remained relatively close to the continental shelf.

In South Australia female white sharks display a highly 
seasonal pattern of visitation to the Neptune Islands, being 
present during the autumn–winter period, but largely 
absent from the region between August and March (Bruce 
and Bradford 2015; Robbins and Booth 2012). When pre-
sent at the Neptune Islands, both sexes have a short resi-
dency time (mean < 11 days: Bruce and Bradford 2013b; 
Huveneers and Udyawer 2018); the current study supports 
the findings of these earlier studies. A similar seasonal 
aggregation of male and female white sharks during the 
autumn–winter period was observed by Kock et al. (2013) 
at a Cape fur seal colony in South Africa. Bruce and Brad-
ford (2015) concluded that some form of sexual segrega-
tion was likely a feature of the SWA population but were 
unable to identify to where female white sharks dispersed 
after departing the Neptune Islands. It now appears that 
female white sharks disperse more widely and further off-
shore than males while generally occupying cooler waters, 
identifying a possible mechanism to maintain sexual seg-
regation within this population, when sharks are absent 
from this important aggregation site. However, in con-
trast to the SWA population, sexual segregation of white 
sharks at Seal Island in South Africa was expressed with 
females dispersing to inshore areas while males were sel-
dom detected in these inshore areas (Kock et al. 2013). 
Francis et al. (2015) observed a male to female sex ratio 
of 2.5:1 at a key white shark aggregation site off southern 
New Zealand. However, sexual segregation was not noted 
in that population, which consisted of a mix of sub-adult 
and adult males and sub-adult females present during late 
summer through early winter (Francis et al. 2015). Large 
female white sharks are present in New Zealand waters, 
including in the vicinity of the southern aggregation site, 
but are rarely seen or recorded (Francis 1996).

In the present study, the data were insufficient to con-
clusively indicate that male and female white sharks pre-
ferred different temperature regimes. However, there was a 
tendency for female white sharks to occupy slightly cooler 
waters than male white sharks. This is in contrast to the 
findings of Domeier and Nasby-Lucas (2012) who report 
female white sharks may prefer slightly warmer water than 
males, especially during the presumed gestation period 
when females remain in warmer off-shore waters. Pos-
sibly negating the advantage of warmer sea surface tem-
peratures, female white sharks occupied a greater depth 
range than males leading to greater exposure to colder deep 
water (Domeier and Nasby-Lucas 2012). Over a much more 
restricted spatial scale, Robbins and Booth (2012) observed 
female white sharks were present at the Neptune Islands, 
South Australia when water temperatures were at their 
warmest. In a subsequent study, using a more extensive data-
set, Bruce and Bradford (2015) found that the presence of 
female white sharks at the Neptune Islands was most likely 
related to differences in foraging strategies between male 
and female sharks and not to a difference in temperature 
preference.

In summary, we have identified further evidence of sexual 
segregation in the SWA white shark population, with female 
sharks tending to disperse more widely and further off-shore 
than their male counterparts. However their distributions 
overlap at key focal points during the Austral autumn–win-
ter period, specifically the Neptune Islands and southern 
Australian shelf canyon systems. These regions of overlap 
are characterised by the presence of abundant high-energy 
prey species. Although both sexes undertake extensive 
migrations, female white sharks tended to disperse more 
widely and exploit off-shelf habitat to a greater extent, thus 
maintaining a form of sexual segregation during the Austral 
spring–summer period. Lastly, none of the movement data 
gathered provided evidence for specific regional pupping or 
nursery grounds. Owing to the sparse distribution and low 
encounter rate of adult female white sharks, further efforts 
to deploy satellite-linked electronic tags aimed at identifying 
these areas should include juvenile as well as adult female 
sharks.
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