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1.  INTRODUCTION

The rapid expansion and widespread use of elec-
tronic tags since the late 1980s has provided a
wealth of information on the movements and behav-
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ABSTRACT: The advent of electronic tagging has
seen vast advances in our understanding of marine
top-order predator movements over broad spatial
scales. However, most studies are restricted to short
temporal scales. We examined movements of 43 juve-
nile white sharks Carcharodon carcharias (1.7− 3.2 m
total length) in eastern Australia via satellite-linked
radio tags (SLRTs) and internally implanted long-life
acoustic tags, the latter monitored by receiver arrays
spanning a continental scale and across international
boundaries. Although SLRT data were restricted to
less than 2 yr, the study registered approximately
182 000 detections of acoustic-tagged white sharks on
287 receivers over 7 yr, with individual tracking peri-
ods of up to 5 yr. Data reveal complex movement pat-
terns over distances of thousands of kilometres and
13° of latitude, with sharks ranging from the southern
Great Barrier Reef, Queensland, to Tasmania and
across the Tasman Sea to New Zealand. Sharks showed
a variety of movement patterns, including annual
 fidelity to spatially restricted nursery areas, directed
seasonal coastal movements, intermittent areas of
temporary nearshore residency and offshore excur-
sions into the Tasman Sea. Movements east to west
through Bass Strait were restricted, further supporting
the 2-population model for the species in Australian
waters. The latitudinal range of movements increased
with years at liberty, and female sharks were more
commonly encountered than males in nearshore wa-
ters. Long-term monitoring of acoustic-tagged sharks
via data sharing through collaborative national and
international receiver arrays offers future pro mise to

examine movements over periods relevant to ontoge-
netic changes and at scales providing context to in-
terannual variability.
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iours of marine animals, especially apex predators
(Arnold & Dewar 2001, Heupel et al. 2015). The
combination of satellite-based tag technology and
long-life acoustic tags has allowed researchers to
examine both fine-scale movements and broad-
scale migrations for many marine species, often
highlighting previous misconceptions about these
aspects of life history (Heupel et al. 2006, Crossin et
al. 2017). Species once considered to be relatively
resident have been found to be highly migratory
and cover enormous distances; examples include
six gill shark Hexanchus griseus (Andrews et al.
2010), basking shark Cetorhinus maximus (Sims et
al. 2005) and white sturgeon Acipenser transmon-
tanus (Welch et al. 2006). Other widely distributed
species have been shown to display strong site
fidelity with small home ranges, such as snapper
Chrysophrys auratus (Harasti et al. 2015) and blue
groper Achoerodus viridis (Lee et al. 2014).

Acoustic and satellite tracking of elasmobranchs is
now considered common practice, with numerous
studies deploying tags to track movements and resi-
dency (Chapman et al. 2015). Sustained, long-term
monitoring of spatial dynamics in shark populations
plays an important role in their conservation biology,
risk management and protection (Hueter et al. 2005,
Heupel et al. 2007, Knip et al. 2010). Some sharks dis-
play strong site fidelity (wobbegong shark Orec-
tolobus maculatus, Lee et al. 2015; leopard shark Tri-
akis semifasciata, Carlisle & Starr 2009), while others
show seasonal movement patterns (speartooth shark
Glyphis glyphis, Lyon et al. 2017; sixgill shark Hexa-
nchus griseus, Andrews et al. 2010). Others under-
take large migrations (whale shark Rhincodon typus,
Wilson et al. 2006; basking shark Cetorhinus max-
imus, Doherty et al. 2017).

One species with a global distribution in temperate
and subtropical marine waters of both hemispheres,
and which travels large distances, is the white shark
Carcharodon carcharias (Last & Stevens 2009). It is
most often observed over the continental shelf, often
around continental islands (Bruce 2008), but can be
found close inshore within the surf zone, as well as
entering some estuaries and large bays (Harasti et al.
2017b, Oñate-González et al. 2017). Long-term
tracking studies have also revealed that C. carcharias
frequent open ocean regions and undertake oceanic
basin-scale migrations (Bonfil et al. 2005, Weng et al.
2007a, Domeier & Nasby-Lucas 2008). White sharks
tagged off California (USA) have been recorded as
far west as the Hawaiian Islands (Weng et al. 2007b).
Duffy et al. (2012) identified migrations between
New Zealand, Australia, New Caledonia, Vanuatu

and Tonga, whilst migrations between South Africa
and north-western Australia have also been recorded
(Bonfil et al. 2005).

Despite their global distribution and propensity for
long-distance movements, several discrete popula-
tions of C. carcharias exist (Pardini et al. 2000, Gubili
et al. 2012). White sharks in the Australasian region
differ genetically from other populations (Pardini et
al. 2000), and data suggest there are 2 populations in
southern Australia separated east and west by Bass
Strait (Blower et al. 2012). This Australasian popula-
tion structure is further supported by acoustic and
satellite tagging studies (Bruce & Bradford 2012,
Duffy et al. 2012, McAuley et al. 2017).

Monitoring the spatial dynamics of apex preda-
tors, such as white sharks, is challenging due to
their low abundance and wide-ranging distribution.
For this reason, most studies have relied on a few
locations where the species tends to be more easily
found, such as pinniped colonies (Martin et al. 2005,
Robbins 2007, Francis et al. 2015). In Australia,
white sharks are known to occur from Northwest
Cape, Western Australia, through southern waters
to the central coast of Queensland (Last & Stevens
2009). In eastern Australia, studies have been fo -
cussed at 2 nursery areas where juvenile white
sharks (<3 m) can be found in relatively high abun-
dance (Bruce & Bradford 2012, Harasti et al. 2017a).
An analysis of short-term (less than 1 yr) satellite
tracking of  juvenile sharks from these nursery areas
supported their largely shelf-based distribution, but
also identified some off-shelf excursions and trans-
Tasman Sea movement (Bruce & Bradford 2012).
However, the long-term movement patterns of juve-
nile white sharks off eastern Australia are yet to be
documented.

Apex predators can potentially have a profound
influence on their surrounding ecosystem (Ruppert et
al. 2013). Understanding the extent of their move-
ments and habitat use will assist with conserving
such species, managing marine communities and, in
the case of white sharks, the prospect of minimising
threats to human safety (McAuley et al. 2017). Using
a combination of acoustic telemetry and satellite
tracking data, this project documents the large-scale
movements of juveniles over a 7 yr period along the
east coast of Australia. Specifically, this study aimed
to (1) examine the distribution and movements of
juvenile white sharks over a range of spatial and
temporal scales, (2) assess differences in movements
and habitat use between sexes and (3) identify areas
of residency, in particular those outside of the de -
fined nursery areas.
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2.  MATERIALS AND METHODS

2.1.  Data acquisition

Juvenile white sharks were tagged within 2
regions of eastern Australia: Port Stephens, central
New South Wales (NSW; 32° 42.12’ S, 152° 12.18’ E)
and near Corner Inlet in southeast Victoria (38°
48.42’ S, 146° 31.8’ E). Tagging occurred as part of a
portfolio of studies designed to determine the sharks’
overall habitat use, movements and survival, as well
as to provide input parameters for a population
model (Bradford et al. 2012, Harasti et al. 2017b,
Hillary et al. 2018). Capture and tagging protocols
followed Bruce & Bradford (2012) and Harasti et al.
(2017b), whereby sharks were either visually located
from a vessel near the surf zone of local beaches, pre-
sented a bait, hooked, then loaded into an in-water
stretcher for tagging; or they were captured on mon-
itored surface-buoyed setlines. An acoustic tag
(Vemco, V16-6x, 69 kHz) was surgically implanted
into the peritoneal cavity of each shark via a 20−
25 mm incision which was sutured closed using PDS
II Z195T sutures (EthiconTM). Total length (TL) and
fork length were measured to the nearest cm, sex
was determined by the presence or absence of
claspers, the hook was removed, and the shark was
released. Several sharks were additionally fitted with
a satellite-linked radio tag (SLRT; either Wildlife
Computers© SPOT or SPLASH tags) attached to their
first dorsal fin (Table 1). Analyses are restricted to
movement data based on acoustic tag detection and
satellite-derived locations.

Acoustic detections were analysed over a 7 yr
period from October 2008 to December 2015. Data
were retrieved directly from receivers deployed as
part of the project portfolio in the vicinity of the 2
tagging regions (see Harasti et al. 2017b for
details of  listening station arrays). These data were
supplemented with data extracted from Australia’s
Inte grated Marine Ob serving System (IMOS)
online database, which stores detections from a
collective of multi-institutional receiver deploy-
ments in Australian waters (https:// animaltracking.
aodn.org.au). Single (non-consecutive) detections
were removed from analyses to minimise the like-
lihood of false de tections. Supplementary data on
white shark captures in the Queensland and NSW
shark control programmes (SCPs) were sourced
from on-line catch statistics and reports (www.
daf.qld.gov.au/ business-priorities/  fisheries/ shark-
control-program and www. sharksmart.nsw.gov.au/
shark-nets, respectively).

2.2.  Data analyses

The direction and timing of movements along the
east coast were determined from acoustic tag detec-
tions using the latitude of the 3 IMOS cross-shelf lines
of receivers as references: Coffs Harbour (29° 55.8’ S),
Bondi (33° 55.8’ S) and Narooma (36° 15.6’ S) (Fig. 1).
The timing and direction of travel of each shark was
determined by 1 of the following 3 methods. A shark
was deemed to have crossed the latitude of a cross-
shelf line if it was (1) detected by receivers on that
line as well as by receivers north and south within
1 mo of the detection on the line; (2) if it had been
 detected by receivers on both the north and south
side of the line within any 30 d period but not on the
line; or (c) if satellite tracking data from fin-mounted
SLRTs (see below) indicated travel across the latitude
of the line irrespective of the shark’s detection on the
line. Direction of travel was determined by the chro -
no logical sequence of detections from north to south
(southerly travel) or from south to north (northerly
travel). Data suggesting travel by individual sharks
that fell outside of these definitions were not in-
cluded in analyses to avoid bias where sharks may
have made multiple crossings of the reference lati-
tudes but had remained undetected or because the
timing and direction of crossing could not be ade-
quately  determined.

Transmissions from SLRTs were extracted from
the ARGOS Collection and Location System (Witt et
al. 2010). Satellite-derived positions are reliant on
the shark surfacing and exposing the tag to air in
order to communicate with the ARGOS satellite
constellation. This can lead to bias in determining
the amount of time spent in a location when multi-
ple fixes are received over short periods of time fol-
lowed by lengthy periods where few or no transmis-
sions are received. To overcome this, we first
calculated an average daily position (ADPsat) for
each shark, using the mean latitude and longitude
for all accepted positions per calendar day (00:00−
23:59 h local time). We followed the methods of
Bruce et al. (2006) to accept positions for analyses.
We then used linear interpolation, implemented in
the R-package ‘adehabitatLT’ (Calenge 2006), to
normalise the transmission frequency by generating
points at 24 h intervals along track gaps of ≤5 d.
Where gaps >5 d were encountered, the track was
split into separate sections (Queiroz et al. 2016) A
5 d period was chosen based on the recorded move-
ment rates of sharks when travelling to minimise
reconstructing unrealistically linear paths over
longer periods.
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Similarly, we calculated an ADP from all acoustic
detections (ADPac) analogous to the ‘centre of activ-
ity’ weighted mean position algorithm estimation by
Simpfendorfer et al. (2002) but using the same 00:00−

23:59 h period. Due to the highly variable distances
between acoustic receiver deployments and, in some
cases, their intermittent deployment schedules, no
attempt was made to interpolate between ADPac

4

Shark     TL       Sex          Tagging             Tags              Tagged Last detection    Period             Time at 
              (m)                       location      monitored (d)                                   Ac            SLRT             Ac        SLRT      liberty (d)

1             2.3         F       Port Stephens           Ac               28/10/08         11/06/09        NA              227         NA             227
2             2.3         F       Port Stephens     Ac; SLRT          28/10/08         26/04/11    30/12/08          749          64              911
3             1.8         F       Port Stephens     Ac; SLRT          28/10/08         20/08/11    10/06/09         1025        226            1027
4             2.3         F       Port Stephens           Ac               28/10/08          9/09/11         NA              969         NA            1047
5             2.2         F       Port Stephens     Ac; SLRT          30/10/08         27/01/10    30/10/08          383           1               455
6             2.4        M      Port Stephens           Ac               31/10/08         17/07/09        NA              170         NA             260
7             2.1         F       Port Stephens           Ac               31/10/08          3/10/09         NA              138         NA             338
8             2.1        M      Port Stephens     Ac; SLRT          28/10/09         10/01/10    27/04/10            1           182             182
9             2.0        M      Port Stephens     Ac; SLRT          28/10/09         13/01/10    21/11/09            3            25               78
10           2.4         F       Port Stephens     Ac; SLRT          28/10/09         25/12/13     1/05/10          1469        186            1520
11           2.3        M      Port Stephens     Ac; SLRT          29/10/09         28/04/10     8/04/10            79          162             182
12           2.1         F       Port Stephens     Ac; SLRT          29/10/09          4/10/14     10/01/10         1686         74             1802
13           2.4         F       Port Stephens     Ac; SLRT          30/10/09          4/03/11      6/05/10           485         189             491
14           2.2         F       Port Stephens     Ac; SLRT          30/10/09         16/10/11    26/01/10          638          89              717
15           2.1         F       Port Stephens           Ac               30/10/09         20/06/14        NA             1605        NA            1695
16           2.2         F       Port Stephens           Ac               27/10/10          7/12/10         NA                1           NA              42
17           2.2         F       Port Stephens           Ac               27/10/10         16/01/11        NA                6           NA              82
18           2.2         F       Port Stephens     Ac; SLRT          27/10/10         27/05/11     2/01/11           169          68              213
19           1.9        M      Port Stephens     Ac; SLRT          27/10/10         28/10/12     5/02/11           677         102             733
20           2.2        M      Port Stephens           Ac               27/10/10         12/02/13        NA              811         NA             840
21           2.5        M      Port Stephens           Ac               29/10/10         28/04/14        NA             1182        NA            1278
22a          2.8         F         Corner Inlet            Ac               14/12/10             ND         1/06/12           ND         536             536
23           2.4        M      Port Stephens           Ac               25/10/11         26/11/11        NA               31          NA              33
24           2.2         F       Port Stephens     Ac; SLRT          25/10/11          5/12/11     28/02/12            1           127             127
25           1.7        M      Port Stephens     Ac; SLRT          25/10/11         14/12/11    16/01/12           50           84               84
26           2.3         F       Port Stephens           Ac               25/10/11          6/09/12         NA              317         NA             318
27           2.2         F       Port Stephens           Ac               25/10/11         24/10/13        NA              730         NA             731
28           2.3        M      Port Stephens           Ac               25/10/11         10/10/11        NA             1082        NA            1082
29           2.1         F       Port Stephens           Ac               25/10/11         20/11/14        NA             1123        NA            1123
30           2.4         F       Port Stephens     Ac; SLRT          25/10/11         28/11/14    28/12/11         1131         65             1131
31           2.3        M      Port Stephens     Ac; SLRT          10/10/12         23/12/13    16/03/13          431         158             440
32           2.8         F       Port Stephens     Ac; SLRT          10/10/12         31/12/15    11/07/13         1176        275            1178
33           2.6         F       Port Stephens     Ac; SLRT          19/12/12         17/05/13     3/07/13           150         197             197
34           2.2         F       Port Stephens     Ac; SLRT          19/12/12          6/12/15     15/03/13         1081         87             1083
35           3.2         F       Port Stephens     Ac; SLRT          20/12/12         27/06/13    12/03/13          156          83              190
36           1.9        M      Port Stephens           Ac               31/10/13         18/10/15        NA              709         NA             718
37b          2.0        M        Corner Inlet            Ac                5/12/13          18/11/14        NA              204         NA             349
38c          2.1        M        Corner Inlet            Ac                5/12/13              ND             NA              ND         NA             NA
39           1.7        M        Corner Inlet            Ac               24/02/14         27/12/15        NA              671         NA             672
40           2.7         F       Port Stephens     Ac; SLRT          14/11/14         21/12/15    16/05/15          388         184             403
41           1.9         F       Port Stephens     Ac; SLRT          24/11/14         26/12/15    15/05/15          399         173             398
42d          1.9         F       Port Stephens           Ac               10/11/15             ND             NA              ND         NA             NA
43e          2.2         F       Port Stephens           Ac                3/11/15              ND             NA              ND         NA             NA

aAcoustic tag was never detected and suspected to have failed
bShark was captured and killed in the New South Wales Shark Control Program (NSW SCP) bather protection net at Bondi
Beach on 19/11/2014

cAcoustic tag was never detected but shark was captured 29 d after tagging on 2/1/2014 in a commercial fish trawl and
released

dShark was captured and killed in an NSW SCP bather protection net at Blacksmiths Beach on 04/12/2015, i.e. 25 d after
tagging 

eFirst detection of this acoustic tag was in 2016

Table 1. Details of tagged white sharks and their periods of tracking. Period monitored refers to the time period between date
of first and last detection; total time at liberty refers to the time period between the date of tagging and date of last detection.
TL: total length; Ac: acoustic tag; SLRT: satellite-linked radio tag; NA: not applicable (shark was not fitted with tag type); 

ND: no data received. Dates are given as (d/mo/yr)
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locations. Chi-squared (χ2) analysis was used to com-
pare overall sex ratio data.

The range of north−south movement along the
coast was estimated by subtracting the lowest (north-
ernmost) latitude from the highest (southernmost) lat-
itude registered by each individual shark during the
study, resulting in the metric ΔLat. Given the uncer-
tainty in growth rates of juvenile white sharks (see
Andrews & Kerr 2015), we did not attempt to estimate
individual changes in size over the course of multi-
year tracking periods. However, to determine if the
latitudinal range of movement changed with sharks’
age/ size, ΔLat was assessed against time at liberty.
Analyses were restricted to juvenile sharks <2.5 m TL
at capture (n = 22), which were tracked for periods
greater than 300 d. Larger sharks (2.5−3.2 m TL; n =
4) were excluded from analyses to avoid comparisons

with individuals that were already ap proach -
ing sub-adult size at tagging (see Bruce &
Bradford 2012 for life-history definitions).

The presence of sharks along the east Aus-
tralian coast was summarised by 0.25° latitu-
dinal bins. This was calculated by summing
the overall number of ADPs (all sharks) per
0.25° latitudinal bin and dividing that by the
number of sharks detected in that bin. Data
were summarised separately for both ADPsat

and ADPac. The resultant metrics were a
measure of mean period of occupancy per
latitudinal bin based on both satellite track-
ing and acoustic tag detection data.

The movement of SLRT-tagged sharks
was further defined into periods of travelling
and residency using hidden Markov models
(HMMs) applied to the linear interpolated
satellite positions (Patterson et al. 2009, Lan-
grock et al. 2012, Zucchini et al. 2016). When
resident, the track of a shark was charac-
terised by a high turning angle and short lin-
ear distance between successive positions;
when travelling, a shark was characterised
by a low turning angle (more linear track)
and longer linear distance between succes-
sive positions. The HMMs were fitted using
the R-package ‘moveHMM’ (Michelot et al.
2015), which estimates parameters that de -
scribe the distribution of observed step
lengths and turning angles derived from esti-
mated locations and uses the Viterbi algo-
rithm to identify a behavioural state (Zuc-
chini et al. 2016).

Residency in the Port Stephens region of
central NSW, previously identified as a nurs-

ery area for white sharks by Bruce & Bradford (2012),
was also examined by estimating the mean number
of days per month that tagged sharks were detected
by acoustic receivers deployed in the area (see Ha -
ras ti et al. 2017b for deployment locations). Addi-
tional re sidency days were included in these analy-
ses where a tagged shark registered an ADPsat within
the nursery area but did not register an acoustic
detection. The bounds of the nursery area for these
analyses were identified from the distribution of
HMM-defined residency behaviour based on ADPsat

data (see Section 3). To provide a monthly mean of
de tection days throughout the study period, the
cumu lative number of days that sharks were de -
tected in the nursery area in each month was divided
by the number of sharks detected during that month.
A residency index (RI), similar to that used by Lee et
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Fig. 1. Broad-scale range of movements of juvenile white sharks
tagged off eastern Australia based on all accepted satellite-linked ra-
dio tag data (black dots). For comparison, the black squares at left indi-
cate the latitude of acoustic receivers that detected tagged sharks
along the east Australian coast and off southern New Zealand. Inte-
grated Marine Observing System cross shelf lines of receivers are posi-
tioned at Coffs Harbour (CH), Bondi in Sydney (Sy) and Narooma (Na).
Rh: Rockhampton; FI: Fraser Island; Br: Brisbane; PS: Port Stephens;
CI: Corner Inlet; BS: Bass Strait; SI: Stewart Island; QLD: Queensland; 

NSW: New South Wales; Vic: Victoria; Tas: Tasmania
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al. (2015), was also calculated for each shark and de -
fined as the number of ADPac registered within the
Port Stephens nursery area divided by the number of
days between a shark’s first and last detection along
the entire coast. RI analyses were restricted to sharks
where the period between first and last acoustic
detection exceeded 1 yr (n = 23). RIs within the Port
Stephens nursery area were compared between
male and female sharks using a t-test after first test-
ing for homoscedasticity with a Fisher’s F-test.

In all analyses, statistical significance was deter-
mined at α = 0.05. Statistical analyses were per-
formed using R statistical software version 3.1.1 (R
Development Core Team; www.r-project.org).

3.  RESULTS

3.1.  Numbers of sharks tagged, sex ratio and sizes

A total of 43 juvenile white sharks were tagged
with internal acoustic tags between October 2008
and November 2015: 39 off Port Stephens and 4 off
Corner Inlet. Of these sharks, 23 were also fitted with
fin-mounted SLRTs (22 from Port Stephens; 1 from
Corner Inlet). Sharks ranged from 1.7 to 3.2 m TL
(mean = 2.2 m) at the time of tagging (Table 1). The
sex ratio of tagged sharks significantly favoured
females (females:males = 28:15; χ2 = 3.93, df = 1, p =
0.047).

Of the 43 tagged juvenile white sharks, 40 were
subsequently detected by either acoustic receivers or
the ARGOS satellite network. Three acoustic-tagged
sharks were not detected during the study period. Of
these, 1 was captured 29 d after and 435 km from the
location of tagging in a commercial fish trawl. It was
released by the fishers but was not subsequently de -
tected on any acoustic receiver. Another was captured
and killed 25 d after tagging at Blacksmiths Beach
(33° 4.5’ S, 151° 39.6’ E) in the NSW SCP, and the third
was first detected in January 2016, outside of the
nominated study period. In addition, a further shark
was captured and killed on 19 November 2014 at
Bondi (33° 53.6’ S, 151° 16.7’ E) in the NSW SCP, 11 mo
after being tagged (Table 1). This shark had previ-
ously been detected by several receivers between
southern NSW and the IMOS Coffs Harbour line, in-
cluding detections on the shoreward-most receiver of
the IMOS Bondi line over the 4 d period immediately
prior to its capture in the SCP net at Bondi Beach.

Mean time at liberty (number of days between tag-
ging and last detection) was 623 d (range 33−1802 d;
median 473 d). We tracked 24 sharks for periods

greater than 1 yr, including 23 fitted with SLRT and/
or acoustic tags and 1 fitted with an SLRT which pro-
vided data over 536 d but whose acoustic tag appears
to have failed (Table 1).

3.2.  Spatial scale of movements

The movements of satellite-tracked sharks were
confined to eastern Australia, ranging from southern
Queensland to northeast Tasmania and across the
Tasman Sea to New Zealand (Fig. 1). Sharks showed
a clear delineation in their east−west movements
through Bass Strait, with very few registered SLRT
positions west of a line running due south from Wil-
son’s Promontory across Bass Strait to northern Tas-
mania (146° 22.0’ E). Acoustic data indicated the
same range of spatial movements. Sharks recorded
181 947 detections on 287 acoustic receivers ranging
from southern Queensland to northeast Tasmania
and included detections by receivers off Stewart
Island in southern New Zealand (Fig. 1). However, a
lack of receiver deployments west of Wilson’s Pro -
montory and through Bass Strait in general pre-
cluded assessment of further westerly movement
from acoustic tag data. One shark (no. 22) travelled
north from SE Victoria to the Port Stephens area of
NSW in 2012, before returning to SE Victoria. In
the following year, it travelled north as far as the
southern Great Barrier Reef, Queensland, covering a
cumulative distance of approximately 8500 km over
its tracking period of 536 d. In both years, shark 22
made excursions offshore east of Bass Strait and
southern NSW of between 200 and 500 km. Shark 35,
tagged off the Port Stephens region, travelled south
along the NSW coast to Bass Strait before heading
offshore in a southeast direction and travelling across
the Tasman Sea to Stewart Island, New Zealand,
where it was also detected on acoustic receivers. The
1800 km crossing from Bass Strait to New Zealand,
commenced in mid-February 2012, was highly linear
and at a sustained rate of movement of approxi-
mately 4.7 km h−1. The SLRT attached to the dorsal
fin of the shark failed shortly after reaching Stewart
Island in early March, but the acoustic tag continued
to be detected by receivers in the area for a period of
3 mo until June (Francis et al. 2015).

3.3.  Seasonal distribution

Juvenile white sharks were recorded along the
entire east coast from southern Queensland to north-
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ern Tasmania in most months of the year.
However, there was a general pattern of
sharks being more commonly distributed
from central NSW to SE Victoria from
December through to May, and from central
NSW to SE Queensland from June to
November (Fig. 2). Exceptions were appar-
ent, with some sharks recorded as far north
as the southern Great Barrier Reef, east of
Rockhampton, in March−April, and with
sharks recorded off SE Victoria in all months
of the year except June. Sharks were
recorded off northern NSW in most months
of the year, with a peak in recorded ADPs
from June to November. Sharks were
recorded off central NSW in all months of
the year.

Acoustic-tagged sharks were detected on
each of the 3 IMOS cross-shelf lines of
acoustic receivers. Eleven tagged sharks
were detected by receivers on the northern-
most Coffs Harbour Line, with 27 crossings
registered over the period of the study
(Fig. 3). Crossings occurred from June to
November, peaking in a northward move-
ment in August and showing a southerly
movement peak in November. We detected
37 tagged sharks crossing the Bondi line off
Sydney, with 119 crossings in total. Six
sharks (5 females, 1 male) were detected on
the innermost receiver closest to the NSW
SCP. Some sharks made several crossings
over multiple years. Crossings were prima-
rily southward from November to March
and northward from April to June. Rela-
tively few crossings oc curred from August
to October. The more southerly located
Narooma line registered 25 crossings by 16
sharks. Crossings were primarily southerly
in October to March and northerly from
April to June.

The monthly timing of white shark cap-
tures in the Queensland SCP peaks from
July to November, following a similar pat-
tern to the cumulative monthly detections
on the northern-most Coffs Harbour line.
Captures in the NSW SCP peak from Octo-
ber to March, coinciding with the peak
period for southerly movement registered
on the Bondi Line. However, the NSW SCP
data do have some temporal bias, as the
 programme does not operate from May to
September.
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Fig. 2. Monthly distribution of juvenile white shark activity along the
east Australian coast by latitudinal bins. Bubble size indicates the per-
centage distribution of average daily position based on satellite and
acoustic tags (ADPsat and ADPac), combined by month (all data 2008− 

2015) per 1° of latitude. Place name abbreviations as per Fig. 1

Fig. 3. Timing and direction of travel for white sharks crossing 3 cross
shelf lines of receivers maintained by the Integrated Marine Observing
System. S: numbers of sharks detected; C: number of crossings where di-
rection of travel was determined. Place name abbreviations as per Fig. 1
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3.4.  Latitudinal range, travelling and residency

There was a significant relationship be tween time
at liberty and latitudinal range, for both sexes com-
bined (Fig. 4; r2 = 0.58). Data were not analysed sep-
arately between sexes due to the lower number of
males in the available sample set.

The presence of sharks was unevenly distributed by
latitudinal bin along the coast, with several areas
showing peaks in mean ADPs (Fig. 5). ADPsat data in-
dicated main peak areas of occupancy east of Rock-
hampton (southern Queensland), Port Stephens (cen-
tral NSW) and off SE Victoria, although the area off
Rockhampton was influenced by data from a single
shark. Several other areas also showed lower peaks in
occupancy, including northern NSW, Wollongong just
south of Sydney and off NE Tasmania. Data were
sparse for ADPac due to the distribution of receiver
 deployments. However, these data showed similar
peaks in occupancy off Port Stephens and SE Victoria.

HMM-based areas of residency and travel, using
ADPsat, showed a similar pattern to latitudinal sum-

8

Fig. 4. Relationship between days at liberty and total latitudi-
nal range of movements in degrees of latitude (ΔLat) for juve-
nile white sharks <2.5 m total length at tagging and tracked
over periods >300 d in eastern Australia. Filled circles =
males; open circles = females. The relationship is fitted by 

y = 0.006x + 1.884 (r2 = 0.58)

Fig. 5. Mean number of average daily positions by 0.25° latitudinal bins recorded for (a) satellite-tracked (ADPsat) and (b) 
acoustic tagged juvenile white sharks (ADPac). Place name abbreviations as per Fig. 1
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maries (Fig. 6). The main areas of residency were
centred around Port Stephens and SE Victoria, with
lower level areas of residency dispersed along the
coast including east of Rockhampton, mid-north
NSW coast, areas south of Sydney and off NE Tasma-
nia. The distribution of HMM residency states off
Port Stephens defined a 90 km coastal strip bounded
to the north by Treachery Head (32° 27.0’ S), to the
south by Newcastle (32° 57.0’ S) and extending up to
35 km from shore. For the purpose of subsequent res-
idency analyses, a shark was defined as being within
the Port Stephens nursery area if it was detected on
an acoustic receiver within these bounds.

3.5.  Residency and annual return to the 
Port Stephens nursery area

Mean residency indices for males and females in
the Port Stephens nursery area were not significantly
different (mean male 0.12; mean female 0.19; t-test,
t = −1.281, p = 0.209) and averaged 0.17 for the sexes
combined. On an annual basis, this equated to a
mean residency period of 62 d yr−1. However, juve-
nile white sharks were detected within the nursery
area in all months of the year. The monthly mean
number of days that sharks were detected was lowest
from March to April and generally peaked from
October to January, although the specific timing of
peaks and individual residency periods varied from
year to year (Fig. 7). For example, shark 32 was
detected in the nursery area for a near continuous
period from 19 December 2012 to 29 October 2013. It
was then recorded on receivers outside the nursery
area followed by a return from 6 to 21 January 2014.

Eighteen out of 39 sharks tagged in the Port
Stephens nursery (46%) made multi-year returns to
the area. Six sharks were detected in 2 consecutive
years; 6 were detected over 3 consecutive years; 4
were detected over 4 consecutive years and 1 was
detected over 5 consecutive years. In addition, shark
12 was detected returning to the Port Stephens area
in 4 years out of the 5 that it was monitored.

Nine sharks tagged in the Port Stephens nursery
(23%) were subsequently detected off SE Victoria in
a region also identified as a nursery area by Bruce &
Bradford (2012). Three sharks tagged in SE Victoria
(75%) were detected in the Port Stephens nursery
area, including 1 via SLRT only whose acoustic tag
appears to have failed. The fourth tagged off SE Vic-
toria was captured in commercial fishing operations
and released off southern NSW but was not subse-
quently redetected.

4.  DISCUSSION

This study examines the broad-scale and long-term
movements of juvenile white sharks in eastern Aus-
tralia, documenting their seasonal movement pat-
terns. These data highlight the value of broad-scale,
nationally and internationally collaborative acoustic
receiver arrays and sustained monitoring of individ-
ual sharks over multi-year periods. The movements
of tagged juvenile white sharks ranged from the
southern Great Barrier Reef (approximately 22° S) to
northeast Tasmania and across the Tasman Sea to at
least southern New Zealand (approximately 48° S).
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Fig. 6. Distribution of residency (black dots) and travelling
states (grey dots) for tagged juvenile white sharks based on
hidden Markov model analyses of data for average daily posi-
tions determined by satellites (ADPsat). The 200 m depth 

contour is indicated by the solid line
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This range is consistent with that documented by
Bruce & Bradford (2012), which was based on a
smaller data set spanning a shorter time period (24
sharks tracked up to a maximum of only 225 d).

In this study, sharks were tracked for a mean period
of 623 d, the largest tracking period being 1802 d
(~5 yr), and with 24 individuals tracked for more than
1 yr. One shark’s movements ranged from Tasmania
to the Great Barrier Reef and return, travelling ap-
proximately 8500 km in 536 d. Another shark was
tracked crossing the Tasman Sea (also re ported by
Francis et al. 2015), further indicating a link between
eastern Australia and New Zealand. No sharks were
recorded travelling west of Bass Strait, which sup -
ports the 2-population model for Australasian white
sharks suggested by Blower et al. (2012).

Most movements of juvenile white sharks were con-
fined to shelf waters with occasional movements up to
100 km offshore. Only 2 sharks showed more exten-
sive offshore movements; shark 22 made excursions
up to 500 km offshore before returning to shelf waters,
and shark 35 travelled to New Zealand. These sharks
were 2 of the largest tagged (2.8 and 3.2 m, respec-
tively). White sharks show an ontogenetic shift from
coastal, shelf-based waters to pelagic habitats in some
areas (Domeier 2012, Skomal et al. 2017). Sub-adult
(male: 3.0−3.6 m; female: 3.0−4.8 m) and adult (male:
>3.6 m; female >4.6 m) white sharks are rarely en-
countered along the coastal strip of eastern Australia.
However, satellite tracking undertaken in New

Zealand on these larger life stages has indicated ex-
tensive long-distance off-shore migrations as well as
on-shelf occupancy near seal colonies (Francis et al.
2012). The behaviour observed in this study suggests
that the size at which juveniles begin to move further
offshore is between 2.5 and 3.0 m, although Bruce &
Bradford (2012) reported a 2.1 m male white shark
that crossed the Tasman Sea (see Fig. 1).

North−south movements of sharks were not always
detected on the cross-shelf lines of IMOS acoustic
receivers, indicating that sharks crossed the latitude
of the array either close inshore or seaward of the
receiver array, or they travelled across the lines with-
out being detected. Only the Bondi IMOS line of
 re ceivers extended across the full width of the shelf
during the study period. Satellite-tagged sharks were
observed to occasionally make excursions of up to
500 km offshore and remain offshore over north−
south coastal distances of up to almost 600 km. These
offshore movements would obviously not be con-
ducive to their detection by coastal receiver arrays
and highlight the value of using both acoustic and
satellite tracking technologies.

Although we observed a considerable degree of
plasticity, the overall movements of juvenile white
sharks were similar (1) regardless of the type or
combination of electronic tag applied; (2) to the tim-
ing and seasonal peaks in concordance with the
capture of non-tagged sharks in SCPs; and (3) to
sharks tagged with non-electronic gamefish tags
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Fig. 7. Monthly mean detection days (black bars) and the number of sharks detected by month (grey line) on acoustic receivers
in the Port Stephens, Australia, nursery area. Arrow denotes the deployment of a more extensive array of receivers than during 

the previous period (see Bruce et al. 2013)
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(see Bruce et al. 2006). Both this level of consistency
and the longevity of tracking (up to 5 yr, i.e. some of
the longest tracking periods achieved on individual
white sharks) does not support theories expressed
by some (see Hammerschlag et al. 2011) that the
application of such electronic tags results in signifi-
cant changes to movement behaviour.

Juvenile white sharks were recorded along most
of the coast throughout the year. However, a sea-
sonal signal of being in the northern region during
winter− spring (June−November) and southern re -
gion during summer−autumn (December−May) was
evident. Crossings of the northern-most Coffs Harbour
line were most common during late winter− spring
and on the southern-most Narooma line during sum-
mer and autumn. These timings of movement are
consistent with the seasonal captures of untagged
juvenile white sharks in both the NSW and Queens-
land SCPs. The peak time for captures in the NSW
SCP occurs during spring when sharks are predomi-
nantly passing the Newcastle-Wollongong region
heading southwards. This may indicate a more in -
shore route of sharks moving south. However, nets
are not de ployed from May to September and thus
the potential for capture of sharks during their pre-
dominantly northern movement during the autumn−
winter period is greatly reduced.

Our results are consistent with seasonal patterns
observed in juvenile white sharks in other coastal
areas. In the western North Atlantic, satellite-tagged
juveniles predominately remained on the continental
shelf (<50 m depth) and moved from the northeast
shelf in the boreal summer to inhabit waters off the
south-eastern USA and the Gulf of Mexico during the
winter (Skomal et al. 2017). In the north-east Pacific,
young-of-the-year and sub-adult white sharks in -
habit the southern Californian and Baja California,
Mexico, coast (Weng et al. 2007b) throughout the
year, but with a peak in abundance in California in
late summer to autumn and the lowest occurrence in
late winter to spring (Domeier 2012). Research from
South Africa suggests that seasonal movement of
white sharks is dependent on the location along the
coast. White sharks of all sizes including juveniles
were recorded in False Bay, Cape Town, year-round
but showed seasonal sex-based aggregations at 2 dif-
ferent regions within the Bay, with females inhabit-
ing inshore regions during the austral spring and
summer (Kock et al. 2013). Further east along the
South African coast, young-of-the-year and juvenile
white sharks occurred inshore of Algoa Bay, Eastern
Cape, during the austral spring and summer (Dicken
& Booth 2013).

The overall seasonal signal in movements suggests
a response to an environmental cue, and several
studies have linked the distribution of white sharks
with water temperatures of around 18°C (Dewar et
al. 2004, Bruce & Bradford 2012, Weng et al. 2012). In
eastern Australia, Lee et al. (2018) found that catches
of white sharks in the NSW SCP were highest when
sea surface temperatures (SST) were ~17−18°C,
which is consistent with results from the KwaZulu-
Natal SCP (Wintner & Kerwath 2018). Conversely,
Werry et al. (2012) found no significant relationship
between SST and white shark catch rates when com-
bining data from both the NSW and Queensland
SCPs. Because white sharks regulate their body tem-
perature (Carey et al. 1982, Goldman 1997), the de -
gree to which water temperature directly influences
their distribution may be less important than other
factors such as the distribution of their prey (Duffy et
al. 2012), which in turn may well be temperature re -
lated. It is clear, however, that not all juvenile white
sharks strictly adhere to a seasonal north− south
movement cycle along the east coast of Australia.

Significantly more females were recorded in the
inshore areas of Port Stephens during this study than
males (ratio ~1.87:1 females:males). An inshore bias
towards females is also consistent with captures in
SCPs along the eastern Australian coast and other
regions. The sex ratio of white sharks captured in
the Queensland SCP significantly favours females
(females: males = 54:34; χ2 = 4.54, df = 1, p = 0.033),
although captures in the NSW SCP favour females,
the difference was not significant (females: males =
27:21; χ2 = 0.75, df = 1, p = 0.386; see also Krogh 1994
and Reid et al. 2011). Historical catches of juvenile
white sharks in the KwaZulu-Natal (Cliff et al. 1989)
SCPs have also recorded a female bias. While sex-
specific patterns of occurrence have been well docu-
mented around pinniped colonies (Sosa-Nishizaki et
al. 2012, Bruce & Bradford 2015, Francis et al. 2015),
this study suggests that an inshore bias towards
females may be a consistent aspect of the species’
early life history.

Sex-based differences in broad-scale movement
patterns have been observed in other life history
stages of white sharks. Domeier & Nasby-Lucas
(2012) found that females in the northeast Pacific use
a larger, less defined offshore habitat than males.
Bruce & Bradford (2015) inferred differences in
movement patterns between males and females
based on seasonal patterns of arrival and departure
of the sexes at the Neptune Islands, South Australia.
Such observations are broadly consistent with sex-
based differences in the presence of white sharks at
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various pinniped colonies world-wide (Bruce & Brad-
ford 2015).

Sex-based habitat use would have important man-
agement implications if an inshore habitat prefer-
ence resulted in juvenile females being more vulner-
able to coastal threats (e.g. fishing mortality or shark
mitigation strategies) than males. For example, 5 out
of 6 juvenile white sharks detected on the inner-most
IMOS receiver of the Bondi cross shelf line and clos-
est to the SCP-meshed beach of Bondi were female.
However, to date, close-kin mark−recapture analy-
ses remain consistent with a 50:50 adult sex ratio for
the east Australian population of white sharks
(Hillary et al. 2018).

The increase in latitudinal range with time at lib-
erty (a proxy of age/growth) observed in this study is
consistent with observations in other areas of the
species’ range. Klimley (1985) reported an increase
in latitudinal range in juvenile white sharks off Cali-
fornia and proposed that younger sharks were ther-
mally limited in their movements. These findings
were supported by Weng et al. (2007b), who also ob -
served a niche expansion of larger juvenile white
sharks into cooler waters both vertically and geo-
graphically. However, oceanographic conditions off
California offer a more pronounced temperature
range with latitude than off eastern Australia, and
dis entangling possible thermal limitation effects
from movements related to varying prey selection as
sharks increase in size is difficult to reconcile from
our current data.

HMM-based analyses and overall patterns of lati-
tudinal distribution were consistent with a 2-nursery
area model for the east coast of Australia in coastal
waters off Port Stephens, NSW, and SE Victoria
(Bruce & Bradford 2012), but also indicated multiple
short-term areas of temporary residency along the
east coast. The footprint of the Port Stephens nursery
area was slightly larger than that reported by Bruce
& Bradford (2012), extending 90 km along the NSW
coastline from Newcastle to Treachery Head. Juve-
nile white sharks made repeated annual visits to both
nursery areas. Sharks visited the Port Stephens nurs-
ery area for up to 5 consecutive years following tag-
ging, although peak residency times varied between
years. The area east of Rockhampton, Queensland,
where 1 shark was temporarily resident, is an area
regularly visited by white sharks tagged in other pro-
grammes (Bruce et al. 2006, Duffy et al. 2012, Francis
et al. 2015) and thus may be an additional important
residency area for the species in eastern Australia.

Movement between the east coast nursery areas
and across the Tasman Sea was dominated by rapid

and direct travel, with rates of movement up to
4.7 km h−1. These rates are consistent with other
studies. McAuley et al. (2017) estimated that a 1.8 m
(TL) male white shark travelled at a rate of 5.6 km h−1

covering 193 km in only 35 h. A further 25 sharks
were estimated to have rates of movement of over
3 km h−1 for distances between 103 and 3362 km.
Domeier & Nasby-Lucas (2008) showed that adult
white sharks travelled along a migration corridor off-
shore into the eastern Pacific at speeds of approxi-
mately 3.2 km h−1, suggesting that rapid, direct, long-
distance movements are relatively common for this
species.

Juvenile white sharks were detected in the Port
Stephens region throughout the year, although there
was a strong seasonal pattern in both occupancy
(number of days per month) and abundance. The
estimated annual residency of sharks in the Port
Stephens nursery area calculated during this study
was similar to that estimated by Bruce & Bradford
(2012) and did not differ between the sexes. How-
ever, monthly mean detection may underestimate
true residency, as receivers were not deployed to
monitor the entire nursery area and thus data refer
only to that area monitored, which was heavily
biased to nearshore and estuarine waters.

This study has examined the movements of acoustic
and satellite tagged white sharks Carcharodon car-
charias off the eastern seaboard of Australia to im-
prove our understanding of their temporal patterns
and spatial extent as well as to inform conservation
management policy and human−shark inter action
risk management strategies. We have documented
extensive movements along the eastern seaboard and
across the Tasman Sea to New Zealand and have
identified sex-based differences in habitat use and an
increase in latitudinal range of movement with size/
age. Further long-term tracking of juvenile white
sharks in eastern Australia will help identify if fe-
males, in particular, are more vulnerable to inshore
anthropogenic pressures. Long-term monitoring of
acoustic-tagged sharks via data sharing through col-
laborative national and international receiver arrays
offers future promise to examine movements over
 periods relevant to further ontogenetic changes and
at scales providing context to interannual variability.
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