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EXECUTIVE SUMMARY 

The ability to detect, measure and monitor change in coastal and marine environments can 
assist in both informing management decision processes and evaluating the results of 
management interventions. Change detection utilising satellite data requires robust time-
series data at temporal and spatial scales that can provide context for meaningful 
interpretations of coastal and marine ecosystem processes. Previously, this analysis has 
employed time consuming methods that hampered the efficient extraction of key information 
on environmental change and trends.  
 
The recently developed Australian Geoscience Data Cube (AGDC) provides a quantum step 
forward in our ability to utilise satellite data for environmental monitoring. The AGDC 
provides a platform for efficient processing and analysis of these data, enabling quantitative 
information to be extracted from the full 28-year time series of the Landsat data archive. 
Also, this approach can be applied to a wide range of current and future satellite data 
streams (e.g. Sentinel series of satellites) to provide rapid, robust environmental monitoring. 
 
We have developed a flexible diagnostic change detection tool, able to extract change 
events from classified variables derived from 28 years of Landsat data in the AGDC. In this 
report we describe how we apply the algorithm to a water detection problem, and show the 
broadscale application using examples of coastal change and estuarine drying events in 
Moreton Bay and the Murray Mouth and Lower Lakes. We also introduce tools which can 
then be used for further analysis of the detected change events. 
 
The algorithm is flexible enough to be applied to a range of variables in the coastal zone, and 
we discuss further applications and potential future linkages to extend this work for the 
examination of important ecological communities. 

1. INTRODUCTION 

The ability to monitor and detect change in the coastal zone is valuable across a wide range 

of application areas including environmental monitoring, coastline change assessment, 

habitat mapping and scientific information to inform planning and policy.  

Over the last three decades, remote sensing has been increasingly recognised as a 

fundamental and cost effective tool for tackling the broad spatial and temporal scales 

required for baseline monitoring and environmental change detection. Traditionally, this has 

meant analysis of an individual scene of a study area, or multiple scenes at a few specified 

time series epochs. Applications where this kind of approach has been used in the coastal 

zone are wide and varied, and include seagrass monitoring (Lyons et al., 2012), examining 

the extent change of intertidal flats (Murray et al., 2014), detecting coral bleaching events 

(Yamano and Tamura, 2004) and shoreline change analysis(Chen and Rau, 1998; White and 

El Asmar, 1999; Shetty et al., 2015). 

In this report we examine a different kind of approach to change detection, utilising the full 28 

year archive of Landsat imagery managed in the Australian Geoscience Data Cube (AGDC). 

Fundamentally, we are looking to explore the ability of the AGDC data to act as a diagnostic 

tool for detecting change.  
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In many change detection applications, often some knowledge of the expected timing and 

spatial locations of a change event is required to enable appropriate Earth Observation (EO) 

data to be selected for analysis. By utilising the AGDC, we look to move past this 

requirement, using the full 28 years of data to identify the regions and timing of potential 

changes, and allowing us to employ new tools to investigate these changes further. 

1.1 The Australian Geoscience Data Cube (AGDC) 

The Australian Geoscience Data Cube (AGDC) is a collaborative project between 

Geoscience Australia, CSIRO and the National Computational Infrastructure (NCI) 

established in 2014, resulting from the Australian Space Research Program funded 

‘Unlocking the Landsat Archive’ initiative. 

The AGDC provides an integrated gridded data analysis environment for decades of 

analysis-ready earth observation (EO) satellite data (http://www.datacube.org.au/). The 28 

year archive of Landsat data over the Australian continent is processed to a standardised 

surface reflectance, accounting for atmospheric correction and terrain and 

viewing/illumination effects (Li et al., 2012), including pixel quality indicators to identify 

anomalies such as cloud or band saturation (Sixsmith et al., 2013). 

The satellite image data is then spatially segmented into 1o by 1o cells to form a regular grid 

of temporal epoch tiles that covers Australia at a 25m pixel spatial resolution (Figure 1). The 

temporal frequency of the data acquisitions varies both spatially, and over the 28 year time 

period. Crucially, having tiles with a fixed and consistent footprint in a linked relational 

database provides a highly efficient structure for EO data analysis in a high performance 

computing environment such as the NCI (Lewis et al., 2015). 

 

Figure 1 – The 1
o
 by 1

o
 cells in the current version of the Australian Geoscience Data Cube (AGDC) 

http://www.datacube.org.au/
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1.2 Aims and Scope of this Report 

The aim of this report is to investigate and illustrate some of the tools and methods for 

change detection that can be used when analysing the time series of EO data in the AGDC. 

This work extends classification work completed on a national scale to detect water in the 

coastal and inter-tidal zone.  

We aim to demonstrate some of the broad-scale diagnostic tools that can be applied to the 

time-series classification to detect when change has occurred, and highlight the issues that 

must be dealt with in a dynamic region such as the coastal zone. This leads to the 

application of targeted tools, to examine in more detail the detected change events 

throughout the 28 year time period being analysed. 

By applying these techniques to coastal/estuarine regions with a known change event, we 

highlight the potential of time-series analysis to semi-automatically extract spatial extents of 

change and to analyse the complex nature of the changes over time.  

Focusing the scope of this study on a simple water/non-water classification allows us to 

illustrate the potential of these techniques for coastal change analysis, with the possibility of 

extending them in the future to other ecological variables that may be classified in the coastal 

zone (salt-marshes, mangroves, seagrass etc). 

2. WATER DETECTION FROM TIME SERIES DATA 

To demonstrate our approach to change detection, we focus on the well-studied remote 

sensing problem of the pixel-by-pixel detection of water (McFeeters, 1996; Xu, 2006; Fisher 

and Danaher, 2013; Fisher et al., 2016; Mueller et al., 2016; Tulbure et al., 2016). By doing 

so we are achieving two objectives. One, we are extending work already completed at 

Geoscience Australia in the Water Observations from Space (WOfS) project, and two, as 

essentially a classification problem, we are providing a framework for investigating change of 

other important environmental variables. 

2.1 Water Observations from Space (WOfS) 

The WOfS project has in many ways been the initial flagship application derived from the 

Landsat archive and the AGDC. WOfS is a continental scale pixel-based assessment of the 

presence and frequency of water across the full 28 year time series of the AGDC Landsat 

archive (Mueller et al., 2016).  

The WOfS output product provides the number of times water has been observed at each 

pixel over the last 28 years, and provides a comprehensive snapshot of the continent, 

identifying the spatial extents of flooding events, seasonal inundation patterns and drought 

affected water storage extents (http://eos-

test.ga.gov.au/geoserver/www/remote_scripts/WOfS_v1.5.htm) 

http://eos-test.ga.gov.au/geoserver/www/remote_scripts/WOfS_v1.5.htm
http://eos-test.ga.gov.au/geoserver/www/remote_scripts/WOfS_v1.5.htm
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2.2 Water Detection in the Intertidal & Coastal Zone 

Detecting water in the intertidal and coastal zone requires us to extend and vary the WOfS 

approach to deal with the specific nature of the environment. Essentially, the intertidal zone 

can be considered a short frequency periodic inundation event, in contrast to more episodic 

events dealt with in the terrestrial WOfS product, such as floods. This has implications for the 

composition and spectral reflectance of the ‘land’ surfaces exposed at a low tide epoch.  

Many tidal flats at low tide still consist of shallow layers or a thin film of water, which can 

strongly effect the absorption of the Near Infra-Red (NIR) and Short Wave Infra-Red (SWIR) 

portions of the remote sensing reflectance signal (Brockmann and Stelzer, 2008). The 

sample set used in WOfS does not consist of these types of ‘dry’ samples, and applied to the 

intertidal zone will often classify them as water.  

Additionally, as an application aimed at terrestrial water, the WOfS sample set does not 

contain many of the water types encountered in the aquatic zone. These can range from 

highly turbid sediment outflow waters to clear coral-reef waters with optical depth visibility up 

to 30m. Hence, the first step in moving the water classification algorithm to the approach 

detailed in section 2.3 was the manual acquisition of many thousands of representative 

spectral coastal and intertidal samples, from a variety of sites and Landsat images.  

Many classification algorithms dealing with the water/non-water problem in the intertidal and 

coastal zone rely on a degree of manual interpretation or classification thresholding (Ryu et 

al., 2002; Murray et al., 2012), often to deal with the degree of uncertainty caused by 

different water types and remnant water on the tidal flats. To deal with this aspect of 

uncertainty, for which the decision tree approach in WoFS is ill-suited, we propose the use of 

a random forest classification approach. 

2.3 The Random Forest time-series approach 

The random forest (RF) classification approach (Ho, 1995; Breiman, 2001) is gaining in 

popularity, due to its robustness in dealing with noise and range of sample data, and its 

ability to represent classifications in a probabilistic framework. The RF approach constructs a 

number of decision trees based on the supplied sample data. Each of these trees only uses 

a subset of the sample data and of the sample decision variables in its construction. 

In our remote sensing water problem, the decision variables may consist of the band values 

of the data, plus some other indices relevant to the problem such as the Normalised 

Difference Water Index (NDWI) (McFeeters, 1996) or Modified Difference Water Index 

(MDWI) (Xu, 2006). In our version of the random forest, each tree then votes with a 

probability of a pixel being water or not water, based on the subset of data and variables it 

has used. These votes are then combined to form a probability of water being present in the 

pixel.  

As we step through the time series at each pixel, the RF model is applied, and we are able to 

generate a probabilistic assessment of the presence of water at each time epoch (Figure 2), 

rather than the binary water/not-water approach of the WOfS implementation.  
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Figure 2 – Example of a Probabilistic Water Classification Output for one pixel through the time series, showing 

the widely varying random forest probability of water classification at each time epoch, characteristic of an 

intertidal area. 

 

3. TIME-SERIES CHANGE DETECTION 

 

In time series analysis, change detection is aimed at identifying times when the probability 
distribution of the time series changes. In remote sensing applications, one approach is to 
apply harmonic analysis models on a time series of spectral or a derivation of spectral values 
to detect phenological changes. BFAST (Verbesselt et al., 2010) is one example of such an 
approach.  
 
Harmonic analysis models work well on remote sensing time series which show strong 
seasonal patterns. However, such a method is not good at detecting environmental change 
events which do not follow seasonal patterns, such as floods, bush fires, 
afforestation/deforestation, or in our case, coastal change. 
 
In this report, we adopt another approach, which does not attempt to find the change point 
using spectral time series data directly. Instead, spectral data are feed into the random forest 
classification model to assign them a probabilistic water/non-water classification. As such, 
the time series of spectral data are converted to time series of probability based surface 
object classes.  
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The developed change detection algorithm then models the time series of objects or a set of 
coefficients derived from the time series (Tan et al., 2011). First, we define a function 
𝑓(𝑥, 𝑡, 𝑤) on a sliding window of the time series, where 𝑥 is the time series data, 𝑡 is the time 

value, 𝑤 is the width of the window (Figure 3)  
 
 

 

Figure 3 – Conceptual Diagram of the Sliding Window Change Detection Approach 

 

Note 𝑓(𝑥, 𝑡, 𝑤)  ∈ (𝑎, 𝑏) as 𝑓
(𝑎,𝑏)

, then the posterior probability of a change event occurring is 

given by 𝑃(𝐶|𝑓(𝑎,𝑏)) =
𝑃(𝑓(𝑎,𝑏)|𝐶)𝑃(𝐶)

𝑃(𝑓(𝑎,𝑏))
 . The prior probability of change is a constant of 𝑓(𝑎,𝑏), 

while 𝑃(𝑓(𝑎,𝑏)|𝐶) can be estimated by a set of training samples provided to the RF algorithm 

construction, and 𝑃(𝑓(𝑎,𝑏)) =  
∑ 𝐼(𝑓)𝑏

𝑎

∑ 𝐼(𝑓)+∞
−∞

.  

 

In this project, 𝑓(𝑥, 𝑡, 𝑤) is defined as 
𝑊𝑙

𝑁𝑙+𝑊𝑙
−  

𝑊𝑟

𝑁𝑟+𝑊𝑟
, where 𝑊𝑙 and 𝑁𝑙 is the number of water 

observations and non-water observation in the first half of the window respectively, while 𝑊𝑟 

and 𝑁𝑟 is the number of water observations and non-water observation in the second half of 

the window respectively. As such, 𝑓(𝑥) ∈ [−1,1], with 𝑓(𝑥) = 1 corresponding to maximum 

probability of changing from wet to dry,   𝑓(𝑥) = −1 corresponding to maximum probability of 

changing from dry to wet and 𝑓(𝑥) = 0 corresponding to the minimum probability of any 
changes. 
 

3.1 Example of Output – Brisbane Port, Moreton Bay QLD 

To illustrate the concepts described in the algorithm, it is helpful to select a region with a 

known and distinct pattern of change. In terms of the detection of water, one of the easiest 

targets is an area where there has been the construction of man-made features such as 

wharves, jetties or land-reclamation for development. The example shown in Figure 4 has 

been chosen to show the ability of the algorithm to detect the step-wise construction of 

Brisbane Port in Moreton Bay, QLD (Figure 5, site A).  
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Figure 4 – Brisbane Port - 95% Probability of change from Water to Dry including the estimated date of change 

In this test of the algorithm we have used a sliding time window length of 4 years (w=4), 

meaning that we are detecting change that is persistent over that time period. By selecting 

the pixels in the output that have a probability of change of over 95%, we can determine the 

regions where we are quite sure we have observed change, in this case from wet to dry. 

The algorithm then returns for each pixel the time value (t) when the maximum probability of 

change was detected, allowing us to produce the extent and timing map shown in Figure 4. 

Here we can clearly see construction of the port infrastructure detected from the early 1990’s 

through to more recent additions from 2010-13. Whilst this a simple example to illustrate the 

functionality of the algorithm, in the next section we show examples looking for more 

dynamic natural environmental change, and how other tools can then be employed to help 

understand the change we detect. 

 

3.2 Visualising identified areas of change 

In this section we examine the outputs of the change detection algorithm for two study area 

locations, Moreton Bay, QLD and the Murray Mouth and Lower Lakes Region, SA. These 

locations have been selected as they exhibit a number of distinct types of coastal and/or 

estuarine change, to which we can apply different types of interpretive tools to further 

analyse the outputs of the change detection algorithm. 
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3.2.1 Moreton Bay, QLD 

Moreton Bay (Figure 5) is mostly enclosed by large sand islands, and consists of a diverse 

community of mangroves, mudflats, seagrass beds and hard and soft corals (Lyons et al., 

2012). To examine coastal change, we have selected two sites, entrances to the bay at the 

southern tips of Moreton Island (Site B) and Stradbroke Island (Site C). At these sites we 

would expect to see a dynamic coastal environment of sand erosion and deposition over time 

that can test the detection capabilities of the algorithm. 

One of the first challenges in working in a more dynamic coastal or tidal environment is being 

able to characterise the types of changes we detect, and isolate the more persistent episodic 

change events from the periodic change occurring in the inter-tidal zone. In a dynamic 

environment however, a single location may change many times over the time-series period. 

Shown in Figure 6, we use the detection of both types of change event, water-dry and dry-

water, to show how we can distinguish between a single and multiple change events at study 

site B. 

 

 

Figure 5 – Moreton Bay, QLD – Study Sites for Change Detection 
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Figure 6 – Southern Moreton Island - 95% Probability of Change areas for Water to Dry, Dry to Water and 

Multiple Changes. Sample Point locations for multiple (A) and intertidal (B) change analysis. 

Here we have been able to not only isolate areas of high change probability from water to dry 

land and dry land to water, but also the regions where we have observed multiple changes 

between water to dry land and back again. As the coastline and spatial pattern of sand 

deposition change dynamically over time (see Appendix A), this is an important feature of the 

algorithm, but it must also be able to distinguish between more persistent changes and those 

observed as part of a normal periodic tidal regime. These two types of dynamic change can 

be examined more closely by querying the time series of results from the random forest 

water-non water classifier, using the pixel drill tool. 

In Figure 7 we see the multiple change pattern observed at Sample Point A, with a clear 

change to land at this point observed between 1998 and 2002. The uncertainty inherent in 

defining water from land in these environments is evident in observations after 2002, which 

may indeed be tidally influenced. 
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Figure 7 – Pixel Drill at Sample Point A showing Probability of Water detection through the time-series. 

 
The distinct change observed at Point A can be contrasted with the type of change pattern 
observed at Sample Point B, located in the inter-tidal zone (Figure 8). At this point we 
observe a periodic drying and inundation of the intertidal zone at the ebb and flow tides. 
Importantly, the ability to constrain the time window width in the algorithm means these types 
of short frequency periodic changes don’t register as a high change probability in our results. 
This also means that the window width must be carefully considered, based on the location 
being analysed, and the specific query being made of the data. 
 

 

Figure 8 - Pixel Drill at Sample Point B showing Probability of Water detection through the time-series 
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As shown in the Brisbane Port example, one of the strengths of the algorithm is the ability to 
not only identify the type and probability of change, but also the time at which it occurred. At 
study site C at the southern tip of Stradbroke Island, we can examine persistent coastline 
change events occurring on both sides of the inlet (see also Appendix A) 
 
Figure 9 shows different periods of coastal deposition on the northern and southern sides of 
the inlet, detected as high probability zones of change from wet to dry.  
 

 
 

Figure 9 – Southern Stradbroke Island – 95% Probability of Change from Water to Dry and estimated change 

dates. 

 

We can examine this change through time at Sample Point C using the pixel drill approach 

(Figure 10). This figure displays a couple of notable features, firstly, the persistent change 

event in June 2006, falls in the corresponding change period retrieved by the algorithm 

shown in Figure 9. Secondly, we see some shorter period changes around 1992 and 2002 

which are ignored by the algorithm as it searches for persistent change. 
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Figure 10 - Pixel Drill at Sample Point C showing Probability of Water detection through the time-series 

 
Looking at the changes from Dry to Wet in this study site (Figure 11) we can see a gradual 
change over time of the northern section of the inlet as the coastline erodes in towards the 
lake (see also Appendix A). Again, we can more closely examine the timing and nature of 
this change by looking through the time series at Sample Point D (Figure 12). Here we see a 
very distinct change from land to water in approximately 2001, corresponding to the 
algorithm outputs. 
 
There is a degree of flexibility built into the algorithm, by the ability to tune the temporal 
window width to detect the types of change the user is looking for. Hence, in conjunction with 
the use of the pixel drill analysis to estimate a period of change, an iterative approach can be 
taken if the user wishes to then further examine the spatial extents of the event. 
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Figure 11 - Southern Stradbroke Island – 95% Probability of Change from Dry to Water and estimated change 

dates. 

 

Figure 12 - Pixel Drill at Sample Point D showing Probability of Water detection through the time-series 
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3.2.2 Murray Mouth & Lower Lakes, SA 

In this section we test the algorithm on a complex coastal and estuarine system at the mouth 

of the Murray River in South Australia. This site was selected as it has a number of unique 

features that enable us to assess different components of the algorithm, and a new method 

of targeted analysis. Notable features of the site include: 

- Distinct boundaries between inland lake and tidal systems, created by the 

Murray River barrages. 

- A specific drying event occurring at the inland lake system during the 

Millennium drought (MDBA, 2012). 

- A highly dynamic river mouth structure, changing significantly over time 

 

 

Figure 13 – The Murray Mouth and Lower Lakes Region – 95% Probability of Change regions shown along with 

the estimated time of change. Transects for further analysis shown over the Murray Mouth and Ewe Island 

Barrage at Lake Alexandrina 
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In Figure 13 we can see the diagnostic outputs of the change detection algorithm clearly 

picking up the widespread drying event in 2006-2007, and as early as 2005 in some lower 

portions of the river. Subsequent re-inundation of most of these areas then does not occur 

until 2009-2010. This is consistent with the documented times of drying during the drought 

(MDBA, 2012). The added benefit of this spatial representation of the time series analysis is 

the gradual/staged drying around edges of the lake picked up by the algorithm. 

To examine the transects shown in Figure 13 we use a tool new to EO data analysis to 

examine the detected change events, referred to as a Hovmöller diagram (Hovmöller, 1949). 

Hovmöller diagrams enable a spatio-temporal visualisation of variables over time, and are 

particularly effective in enabling an intuitive examination of complex events. 

For the water/land based change events at this study site, we employ a commonly used 

water index as an input to the Hovmöller diagrams models. The Normalised Difference Water 

Index (NDWI) (McFeeters, 1996) is based on a ratio of the observed green and NIR band 

reflectance values at each pixel: 

𝑁𝐷𝑊𝐼 = 𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅
𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅⁄  

Values of this index range from -1 to 1, with negative values indicating land and positive 

values indicating water. For our analysis, we calculate the NDWI index for each pixel in each 

image tile for the time series, before application of the Hovmöller diagram approach. 

The Ewe Island barrage is  one of five barrages separating the Murray System from  the 

coastal waters of the Coorong (MDBA, 2012). Effectively, this separates the tidal coastal 

system and the River and Lake system that was severely affected by the drought drying 

event. We can examine this spatial relationship using the NDWI time series as shown in 

Figure 14. 

Figure 14 clearly displays the drying event that occurred in Lake Alexandrina commencing in 

late 2006 and then extending all the way to the barrage (transect pixel 120) at the beginning 

of 2007. The end of the drought is reflected by the inundation of the lake areas (Pixels 30 to 

120) at the end of 2009. The diagram also highlights clearly the periodic nature of the tidally 

influenced regions south of the barrage, with the regular nature of the drying and inundation 

events shown from pixels 120 to 165). 

Our results can be correlated to river flow data (Figure 15) obtained from Lock One, 

managed by the Murray Darling Basin Authority (MDBA) and supplied through the SA 

Department of Environment, Water and Natural Resources 

(https://www.waterconnect.sa.gov.au/Systems/SiteInfo/Pages/Default.aspx?site=A4260903&

period=HRLY#Historic Data) 

 

https://www.waterconnect.sa.gov.au/Systems/SiteInfo/Pages/Default.aspx?site=A4260903&period=HRLY%23Historic%20Data
https://www.waterconnect.sa.gov.au/Systems/SiteInfo/Pages/Default.aspx?site=A4260903&period=HRLY%23Historic%20Data
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Figure 14 – Hovmöller Diagram of the Ewe Island Barrage Transect. Low NDWI values (red) indicate Land, 

through to high values (blue) indicating water.   

 
 

Figure 15 – River Flow Data at River Murray Lock One Downstream – Megalitres per Day. 
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Here we clearly see greatly reduced river flows commencing from 2001, before a further 
significant reduction in 2006/2007, closely correlated to the largest spatial extent of drying 
seen in Figure 14. The abrupt increase in flow in 2009/10 is again mirrored in the results of 
the time series analysis, with the release of water through the barrage. This increased flow 
damped the tidal regime for this short period on the southern side of the barrage (pixels ~ 
120-165). 
 

At the Murray Mouth Transect we examine the movement of the Murray Mouth structure, 

again through using the NDWI index and time series analysis using the Hovmöller diagram. 

Figure 16 shows the dynamic nature of both the size and position of the mouth over the full 

extent of the time series. 

 

Figure 16 - Hovmöller Diagram of the Murray Mouth Transect. Low NDWI values (red) indicate Land, through to 

high values (blue) indicating water 

Here we can clearly see the narrowing and widening of the river mouth as it changes position 

over time, including instances in 1990, 1997 and 2002 when it nearly closes entirely at this 

location. The effect of the dredging that then took place between 2002 and 2010 to ensure 

the mouth remains open (Water and Natural Resources (DEWNR), 2015) is reflected by the 

wider river mouth across this period. The full dynamic nature of the mouth can also be 

viewed in the accompanying video detailed in Appendix A. 
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4. FUTURE WORK & LINKAGES 

In this section we look at two important ecological communities that could be examined using 

the time series change detection algorithm we have developed, and the associated tools that 

enable a more detailed interrogation of change events and trends. 

4.1 Extension to other Variables 

One important ecological community that can be examined by the application of indices and 

the time-series analysis approach is mangroves. The use of the Normalised Difference 

Vegetation (NDVI) index can indicate the health of mangrove communities through the time-

series, and clearly indicate change. 

In the example below we examine a transect through the Junction Bay mangrove community 

in the Northern Territory. This estuary is of particular interest from a change detection 

perspective, due to the impact of two tropical cyclones, TC Debbie (Cat 3 in 2003) and TC 

Monica (Cat 5 in 2006). In Figure 17 we see the damage caused directly after TC Monica. 

 
 

Figure 17 – Junction Bay mangrove community stripped and flattened, post TC Monica– Photo Credit: Garry 

Cook, CSIRO Sustainable Ecosystems  
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Examining the transect displayed in the Hovmöller diagram, we clearly see the decrease in 
vegetation health after severe TC Monica in 2006. From this analysis, it is clear that the 
community has yet to fully recover to its previous condition even 7-8 years after the event. It 
is this kind of feature of the time series approach that could prove very valuable to 
ecosystem monitoring, as we can not only isolate the change event, but the longer term 
associated effects. 
 

 

Figure 18 - Hovmöller Diagram of the Junction Bay Mangrove Community, NT. High NDVI values (green) indicate 

heathy vegetation, through to yellow which is indicative of soil or damaged vegetation, through to blue indicating 

water. 

Whilst we can explore change events based on indices and spectral data such as the 

mangrove example above, the change detection algorithm is designed to interpret classified 

objects, and hence could be extended to any environment class that can be reliably 

classified from EO data.  

Saltmarsh communities are also important under The Environmental Protection and 

Biodiversity Conservation (EPBC) Act managed by the Department of the Environment. In 

particular, Subtropical and Temperate Coastal Saltmarsh are listed as vulnerable under the 

Act. Provided relevant field observations/ecological expertise can be brought to the 

classification of these communities based on EO data, the change detection algorithm in this 
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report could provide a framework for developing baselines and monitoring change in their 

extent. 

This kind of mapping and monitoring also has the potential to complement research being 

conducted in Project B4 of the NESP (Underpinning the repair and conservation of 

Australia’s threatened coastal marine habitats), by providing baselines, robust measures of 

past change and monitoring to support efforts for the rehabilitation of estuarine/coastal 

habitats. 

4.2 Developing Data Sets to support Coastal Applications 

GA is currently developing workflows to extract statistical surface reflectance composites 

from the Landsat archive data in the AGDC, based on a range of physical indices (e.g NDVI) 

and seasonal epochs.  

For our work in this aquatic/coastal space, we have established a database of tidal offsets 

relative to MSL for each coastal tile in the AGDC based on the time of acquisition, utilising 

the OTPS tidal models developed at Oregon State University 

(http://volkov.oce.orst.edu/tides/tpxo8_atlas.html). 

As part of evaluating these tidal models, we are producing first pass composite median 

reflectance images of the Australian coastline at both low and high observed tide across 20 

years of the Landsat archive in the AGDC. The current version is derived using an 

independent spectral band based median approach, creating a synthetic spectra, however a 

number of methods can be employed to create the composite spectra. 

Once developed, these cloud and noise free data sets have significant potential to improve 

habitat classification, change detection and feature delineation in the coastal zone, and can 

be derived over a used defined range of seasonal, tidal or finer-scale temporal epochs. In 

Figure 19 we show an example of such imagery derived at high and low tide in the Kimberley 

region of WA. 

 
 

Figure 19 – Low (left) and High (right) tide composite reflectance images derived from modelled tides across 20 

years of Landsat data in the Kimberley Region, WA. 

http://volkov.oce.orst.edu/tides/tpxo8_atlas.html
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5. CONCLUSIONS 

 

In this report we have focused on the detection of water from Landsat EO data held in the 

AGDC, as a method for extending current EO work at Geoscience Australia into coastal 

change detection. However, the change detection algorithm we have described has been 

designed so it can be applied to any variable that can be classified using EO data across the 

coastal zone. This flexibility is key to the usability of the algorithm, and its potential for further 

use in coastal projects and linkages with other government environmental priorities.  

The broad scale diagnostic properties of the algorithms allow the full 28 years of Earth 

Observation data to be examined, without prior knowledge of a specific change extent or 

timing. Once change is identified, we have demonstrated further tools that can then be 

applied to examine more specifically the nature of the change event  

Future work in this space could aid in mapping and monitoring the distribution of threatened 

communities, habitat change from extreme events, and the change over time of important 

ecological communities such as mangroves and salt marshes. 
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APPENDIX A  

 
Included as Appendices to this work are links to the metadata records and download links for 
short movies visualising the times-series of Landsat images used to complete analysis at the 
following sites: 
 
Study Site B – Southern_Moreton_Island.mp4 
 
Metadata: http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=90f1121e-
b973-46d4-9a51-5f750d954319 
 
Video: http://data.imas.utas.edu.au/attachments/90f1121e-b973-46d4-9a51-
5f750d954319/steve%20sagar%20-%20Southern_Moreton_Island.mp4 
 
 
 
Study Site C – Southern_Stradbroke_Island.mp4 
 
Metadata: http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=67fef6b1-
1540-445f-a995-71abcefeb99b 
 
Video: http://data.imas.utas.edu.au/attachments/67fef6b1-1540-445f-a995-
71abcefeb99b/steve%20sagar%20-%20Southern_Stradbroke_Island.mp4 
 
 
 
The Murray Mouth – MurrayMouth.mp4 
 
Metadata: http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=a0bf5d29-
0986-443a-a9e2-a9d7523c9a3c 

Video: http://data.imas.utas.edu.au/attachments/a0bf5d29-0986-443a-a9e2-
a9d7523c9a3c/steve%20sagar%20-%20MurrayMouth.wmv 

 

 

 

 

 

 

 

 

 

 

 

http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=90f1121e-b973-46d4-9a51-5f750d954319
http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=90f1121e-b973-46d4-9a51-5f750d954319
http://data.imas.utas.edu.au/attachments/90f1121e-b973-46d4-9a51-5f750d954319/steve%20sagar%20-%20Southern_Moreton_Island.mp4
http://data.imas.utas.edu.au/attachments/90f1121e-b973-46d4-9a51-5f750d954319/steve%20sagar%20-%20Southern_Moreton_Island.mp4
http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=67fef6b1-1540-445f-a995-71abcefeb99b
http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=67fef6b1-1540-445f-a995-71abcefeb99b
http://data.imas.utas.edu.au/attachments/67fef6b1-1540-445f-a995-71abcefeb99b/steve%20sagar%20-%20Southern_Stradbroke_Island.mp4
http://data.imas.utas.edu.au/attachments/67fef6b1-1540-445f-a995-71abcefeb99b/steve%20sagar%20-%20Southern_Stradbroke_Island.mp4
http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=a0bf5d29-0986-443a-a9e2-a9d7523c9a3c
http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=a0bf5d29-0986-443a-a9e2-a9d7523c9a3c
http://data.imas.utas.edu.au/attachments/a0bf5d29-0986-443a-a9e2-a9d7523c9a3c/steve%20sagar%20-%20MurrayMouth.wmv
http://data.imas.utas.edu.au/attachments/a0bf5d29-0986-443a-a9e2-a9d7523c9a3c/steve%20sagar%20-%20MurrayMouth.wmv
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