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Fishes are the most diverse group of vertebrates, play key functional
roles in aquatic ecosystems, and provide protein for a billion
people, especially in the developing world. Those functions are
compromised by mounting pressures on marine biodiversity and
ecosystems. Because of its economic and food value, fish biomass
production provides an unusually direct link from biodiversity to
critical ecosystem services. We used the Reef Life Survey’s global
database of 4,556 standardized fish surveys to test the importance
of biodiversity to fish production relative to 25 environmental
drivers. Temperature, biodiversity, and human influence together
explained 47% of the global variation in reef fish biomass among
sites. Fish species richness and functional diversity were among
the strongest predictors of fish biomass, particularly for the large-
bodied species and carnivores preferred by fishers, and these biodi-
versity effects were robust to potentially confounding influences of
sample abundance, scale, and environmental correlations. Warmer
temperatures increased biomass directly, presumably by raising me-
tabolism, and indirectly by increasing diversity, whereas temperature
variability reduced biomass. Importantly, diversity and climate inter-
act, with biomass of diverse communities less affected by rising
and variable temperatures than species-poor communities. Biodiver-
sity thus buffers global fish biomass from climate change, and con-
servation of marine biodiversity can stabilize fish production in
a changing ocean.
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U nderstanding the controls on marine fish biomass production
is central to both sustaining ecosystems and human devel-
opment goals. Ultimately, the quantity and distribution of biomass
in ecosystems is determined by availability of resources and the
physical conditions that make life possible. Temperature is a
fundamental control on rates of cellular metabolism and biological
processes at all levels (1) and, together with the solar energy and
mineral nutrients that support plant growth, sets the template for
global patterns of biomass production and other biological activ-
ities. Superimposed on this bottom-up control are interactions
among organisms that mediate biomass production. Top-down
control by consumers commonly limits biomass of lower trophic
levels below what resources could support (2), with often far-reaching
direct and indirect effects on ecosystems (3). Human harvesting is
increasingly the dominant top-down control in many ecosystems (4)
and, in the ocean, industrialized Homo sapiens has emerged as both a
dominant and a keystone predator, strongly reducing fish biomass
and transforming marine ecosystems worldwide (5, 6).
Fundamental to the interactions of organisms with one another
and with the environment is evolutionary adaptation, which molds
populations toward more efficient resource use and, consequently,
greater biomass production. In natural, environmentally hetero-
geneous ecosystems, theory predicts that this adaptation results in
communities of many species using a larger fraction of available
resources than species-poor communities, and thus that diversity
of both traits and species promotes higher total biomass produc-
tion (7). Meta-analysis of hundreds of experiments supports the
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positive effect of biodiversity on productivity (8), and suggests that
such biodiversity effects are comparable in magnitude to those of
other global-change drivers (9). Because resource use efficiency is
mediated by functional traits of organisms, functional diversity may
be a more direct measure of a community’s capacity for production
than species richness (10). As such, theory predicts (11) and ex-
periments confirm (12) that functional differences among species
result in diverse communities having more stable community-level
production in the face of perturbations. Most of these inferences,
however, come from highly controlled, often trophically simplified,
and artificial experiments (10), and the influence of biodiversity on
productivity in wild ecosystems remains controversial, reflecting a
long-running debate over both the importance of biodiversity relative
to other global-change drivers, and the difficulty of disentangling
their influences using observational data (13, 14).

Resolving the controversy over the contributions of bio-
diversity to productivity and stability has important implications
for conservation and fishery management because the major drivers
of biomass production—temperature, resources, fishing, and bio-
diversity—are changing rapidly alongside growing human pop-
ulation and resource consumption. Biodiversity is declining on
average at marine sites impacted by human activity (15), and is
decreasing globally at rates orders-of-magnitude above historical
background levels (6, 16), with some suggesting that biodiversity
loss is already approaching a planetary tipping point beyond which
ecosystems may be irreparably compromised (17). This information
raises a practical question: how does declining biodiversity affect
the resilience of ecosystems to other stressors, specifically climate
change and human harvesting?

Quantifying the influence of declining biodiversity on ecosys-
tem services remains a major challenge (18) because interactions
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among organisms are rarely incorporated in projected models of
global change (19), and because most ecosystem services involve
chains of biophysical and social processes that have proven dif-
ficult to link and quantify (20). Fish biomass production is an
important exception to the latter rule in that it is simultaneously
a biophysical process and an economically quantifiable ecosystem
service. The influence of changing biodiversity on harvestable fish
biomass thus represents an unusually direct link from biodiversity
to a major ecosystem service. We quantified this relationship using
a global dataset of >4,500 surveys of fish assemblages inhabiting
shallow, hard bottoms throughout the world ocean collected using
standardized protocols (21). We apply path analysis using hierar-
chical mixed models to ask: How do changing climate, biodiversity,
and other drivers influence global reef fish biomass? And how do
these factors differ between industrialized temperate regions and
the less-developed tropics where people depend more on fish
protein?

Results and Discussion

Our results confirm that on a global scale, temperature is the
dominant control on reef fish biomass, acting both directly and
indirectly by increasing fish species richness and functional di-
versity (Fig. 1). Temperature is well documented as a fundamental
driver of metabolism and production (1) and a strong determinant
of species-richness patterns (22). Our analysis unites these results,
revealing that roughly one-third of the temperature effect on
global reef fish biomass is indirect, acting by boosting fish species
and functional diversity, which in turn increases biomass (Fig. 1).
The direct effect of temperature on biomass across the global
range (Figs. 1 and 2C) primarily reflects strong temperature-
dependence of biomass in cool temperate regions (Fig. 3 £ and F).

Our most striking finding is the strong and consistent effect of
biodiversity on global reef fish biomass. Species richness and
functional diversity both enhanced fish biomass, and were the
strongest predictors after temperature, followed closely by human
impacts (Figs. 1 and 2C, and SI Appendix, Table S1). These bio-
diversity components were also the two top predictors of fish
biomass in an independent random forest analysis that accounted
for 25 other variables, including temperature (SI Appendix, Fig.
S2). Biodiversity effects on biomass are difficult to isolate from
other influences in observational data, especially the inherent
correlation between abundance and richness. Therefore, we probed
this result with a series of tests to identify potentially confounding
effects of sample size, sampling scale, structural complexity (coral
cover), and other potentially spurious correlations. The increase in
fish biomass with diversity was robust to all these potential artifacts
(SI Appendix). Moreover, comparison of several alternative model
fits confirmed at the global level the prior finding from tropical
systems (23), that fish biomass scales in a nonsaturating way with
richness and is best represented by a decelerating power function
(SI Appendix), also matching the pattern seen in recent results from
long-term diversity manipulations in grasslands (24). When plotted
on log-log axes, it is evident that biomass scales with estimated
richness with a shallower slope in the tropics than in temperate sites
(Fig. 2 A and B).

Our finding that biodiversity is a major determinant of fish
biomass is strengthened by the Reef Life Survey’s unique global
scope, standardized methods, integration across trophic levels,
and the inclusion in our analyses of a rich suite of environmental
covariates. To our knowledge, this represents the most com-
prehensive observational test yet of diversity effects on biomass
in any natural ecosystem, and corroborates previous results from
controlled diversity manipulations (8, 9). Importantly, our data
show that changing biodiversity is a major control on the globally
important ecosystem service of reef fish biomass production,
comparable to climate and human impacts. An earlier synthesis
of experimental and observational data similarly reached the
conclusion that marine fish diversity enhanced fishery catch and
stability (25), but that study was widely criticized for using fishery
catches as proxies for abundance, extrapolation from small-scale
experiments, and failure to account for covarying influences, among
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Fig. 1. (A) Path diagram of factors influencing global reef fish biomass.
Black and red paths represent positive and negative influences, respectively.
Path thickness is proportional to the standardized regression coefficient
(S/ Appendix, Table S1). Paths of § < 0.05 are not shown. Gray box surrounds
abiotic variables (and chl a), for which paths have been omitted for clarity
and are shown in S/ Appendix, Fig. S1. "Log;o-transformed. FD, functional
diversity; T, sea-surface temperature. (B) Summed direct and indirect effects of
temperature, mineral nutrients, biodiversity, and human population density.

other reasons (26, 27). Our analysis accounts for these and other
potentially confounding factors, and confirms that biodiversity is
indeed a major determinant of global reef fish biomass.

Along with climate and biodiversity, we find that human activ-
ities are similarly important as planet-scale environmental gradi-
ents in influencing biomass of fish communities on nearshore hard
bottoms. Fish biomass declined substantially with proximity to
human population in our global analysis (Fig. 1 and 2C), especially
in the tropics, where human population was the single strongest
predictor of reef fish biomass (Fig. 3F). Because human pop-
ulation is closely correlated with fishing pressure, coastal devel-
opment, and eutrophication (23), isolating the specific causes of
this human impact is challenging. A strong role for fishing as the
primary driver is suggested by our finding that human impact was
strongest on larger size classes (SI Appendix, Fig. S3), and on top
and benthic carnivores (Fig. 3 4 and B), which are most prized by
fishers (28), as shown previously for reef fishes (29). One possible
explanation for the stronger effect of humans in the tropics is that
temperate sites have already endured a long history of human im-
pacts and that the smaller effect outside the tropics is only apparent,
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Fig. 2. Global estimates of the effects of biodiversity and environmental drivers on reef fish community biomass. (A) Log biomass as a function of log estimated
richness (corrected for sample coverage) (52). (B) Same as A, but using ecoregion means. (C and D) Effect sizes (standardized partial regression coefficients) of 11
predictors of (log) reef fish biomass from the global hierarchical model among (C) sites and (D) ecoregions. (E and F) Log biomass as a function of mean annual
temperature at low- and high-richness sites (relative to median richness), respectively. (G and H) Log biomass as a function of annual temperature range at low-
and high-richness sites, respectively. S, estimated richness. Blue and green symbols represent tropical and temperate sites, respectively.

that is, the result of a shifting baseline. This finding is supported
by the high and relatively invariant (log) human population index
among temperate (mean =+ SD = 4.71 + 0.90) compared with tropical
sites (2.61 + 2.23, respectively), and by the unstandardized (i.e., raw)
effects of human population, which are comparable between tem-
perate (B = —0.072 + 0.031) and tropical sites (p = —0.058 + 0.015).
Thus, the smaller relative impact of humans at temperate sites
(Fig. 3 E and F) probably reflects the rarity of sparsely populated
sites, and accordingly smaller gradient in human population outside
the tropics. Our results may therefore reflect both strong historical
impacts of human activities on temperate fishes, as well as emerging
impacts in less-populated tropical sites.

Human influence also appeared to shift ecosystem control from
bottom-up to top-down: considering only tropical sites (because all
temperate sites had nearby human population), sites far from
human influence showed a dominant signal of bottom-up forcing
by dissolved phosphate, a key limiting nutrient in oligotrophic
waters. In contrast, sites close to human population showed no
phosphate effect and instead a modest but highly significant in-
crease in fish biomass with depth (SI Appendix, Fig. S4), a pattern
often associated with intensive fishing in shallow waters (30). This
apparently human-mediated shift from bottom-up to top-down forc-
ing supports previous analyses (31) and may explain the otherwise
surprising weakness of nutrient effects on fish production in the
global analysis (Fig. 1), which seems at odds with some regional
analyses supporting bottom-up control of fish biomass in pelagic
and sediment-bottom habitats (32, 33). The strong impact of
humans on global reef fish biomass and trophic control illus-
trates clearly that human activity has become a pervasive force of
marine nature.

All fishes do not contribute equally to the ecosystem service of
fish production for human consumption. Thus, evaluating the
role of biodiversity in providing this service requires focusing more
specifically on preferred targets of fishers. Although many types of
fishes are harvested as availability declines, fishers generally and
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preferentially target large individuals, which also include top car-
nivores (28). Our data corroborate this behavior, showing that
human impacts are strongest on large fishes (>35 cm) (SI Ap-
pendix, Fig. S3) and on top and benthic carnivores (Fig. 3). Im-
portantly, biodiversity remains among the strongest predictor of
biomass for the largest fishes (SI Appendix, Fig. S3) and for top
carnivores (Fig. 3), rivaling or surpassing the effect of temperature
at the global scale. In the tropics, biodiversity and human impacts
were in fact the only significant predictors of large fish biomass (S
Appendix, Fig. S3D). These effect sizes (partial regression coeffi-
cients) account statistically for other predictors in the model, and
therefore quantify the effect of biodiversity at a given level of
human impact (e.g., harvest). Thus, our global analysis provides
strong evidence that maintaining biological diversity enhances the
ecosystem service of high-value harvestable fish production.

A frontier in global-change research is understanding how
different stressors interact. The link between biodiversity and
biomass raises the question of how biodiversity affects responses
of fish biomass to ongoing climate change and human impacts.
Because biodiversity is strongly controlled by temperature, chang-
ing climate is expected to reorganize marine communities, as is
already happening (34-36). Our results show that this reorganization
has important consequences for fish biomass production because
higher diversity buffers fish biomass against expected direct effects of
climate. First, although climate variability (temperature range) re-
duced fish biomass on average, this effect was halved in the richest
communities (Fig. 2 G and H and SI Appendix, Table S2), possibly
because species-rich communities harbor fishes with a range in
thermal niches. The stronger decline in low-richness fish communi-
ties is not explained by lower coral cover at those sites (SI Appendix),
and remained significant after excluding sites with sea-surface tem-
perature (SST) range >9 °C, beyond the range of most high-richness
sites. Second, diverse assemblages had higher mean biomass at higher
temperatures (Fig. 2 E and F). Specifically, in low-richness commu-
nities, biomass had a hump-shaped relationship to temperature
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(Akaike Information Criterion confirmed that the quadratic fit was
better than linear), increasing over the low range and declining
again at the highest temperatures, whereas in high-richness com-
munities fish biomass showed a weaker, linear increase with tem-
perature (Fig. 2 E and F). In short, diversity tends to stabilize fish
biomass production against rising and more variable temperatures.
This finding suggests that the buffering capacity of biodiversity
against climate variability may be a general phenomenon because it
has also been documented in grassland plants (37).

Tropical ecosystems were especially sensitive to human impacts
(Fig. 3F) and are considered highly vulnerable to warming-induced
reduction in species richness because of strongest warming in
tropical (and polar) regions and because many tropical species are
near their upper thermal tolerance limits (19, 38). Our analysis
suggests, however, that vulnerability of fish biomass to warming
should be buffered in tropical communities as a result of their high
diversity, which provides resilience to both increasing mean tem-
peratures and increasing climate variability (Fig. 2 E-H and
SI Appendix, Table S2). To explore more broadly the sensitivity of
marine ecosystems to biodiversity loss, we obtained separate esti-
mates of the dependence of biomass on richness for each of the 68
ecoregions for which estimates could be reliably obtained (39). Fish
biomass was most sensitive to changing fish diversity at cooler,
nutrient-rich sites also characterized by low richness and abun-
dance (Fig. 4). The relative importance of these influences is dif-
ficult to disentangle because they tend to occur together. However,
the explanation suggested by theory and prior empirical results is
that the naturally low species richness at cooler sites results in low
functional redundancy. Thus, at cooler, less diverse sites species fill
more unique roles on average (40) and loss of a single species
reduces biomass production more than it does at richer sites, where
the remaining ecologically similar species can compensate for that
loss (41). This finding implies that high-latitude marine ecosystems
are especially ecologically vulnerable to climate change, due not
only to higher projected invasion rates (19), but also to stronger
impacts of species loss on production (Fig. 4) and stronger trophic
cascades (31), compared with lower latitudes.

Although high diversity thus appears to buffer reef fish com-
munities against climate change, diversity provides no such benefit
to other impacts of human population. A previous analysis reported
a negative interaction between (trophic) diversity and human
population density for tropical reef fish biomass (23). In our more
geographically comprehensive analysis, we found no interaction
between human density and either species richness or multivariate
functional diversity (SI Appendix, Table S2). However, fishing
pressure and high temperatures act synergistically to increase vul-
nerability of coral reef fishes (42), potentially explaining our finding
of greater sensitivity of reef fish biomass to human impacts in the
tropics (Fig. 3). Moreover, many tropical fishes and reef corals
appear to be living near the upper limits of their thermal ranges (38,
43). Most forecasts predict widespread loss of coral habitat with
warming ocean temperature over the coming century, which will
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likely have serious negative consequences for associated reef fishes
(44). These considerations illustrate that biodiversity can interact
differently with different stressors and underscore the importance
of reducing overfishing and conserving habitat, including coral
reefs, to maintain marine biodiversity and ecosystem services.

In summary, our analysis of global, fishery-independent data
provides a uniquely powerful test of the long-debated questions
of whether biodiversity promotes greater production and stability
in nature, how important those biodiversity effects are relative to
other drivers, and how they interact. We find that biodiversity is
equally and often more important than water quality, nutrient
supply, and human influence in controlling the global distribu-
tion of reef fish biomass, and that more diverse fish communities
are more resilient to impacts of changing climate. Moreover,
both species richness and functional trait diversity contributed
roughly equally to fish biomass globally, generalizing local in-
ferences that reef fish trophic interactions (45, 46) and functional
diversity (47-49) are key mediators of the community structure
and resilience of coral reef ecosystems. Because reef fish biomass
provides an important protein source for many people, particu-
larly in the developing world, our results suggest that manage-
ment to sustain reef fish diversity, of both species and functional
types, will also promote higher productivity of fish biomass and
higher resilience of that ecosystem service in the face of rising
and more variable temperatures.

Materials and Methods

Reef Life Survey. Standardized quantitative censuses of reef fishes were
undertaken by trained recreational SCUBA divers on shallow hard substrate
habitats worldwide through the Reef Life Survey program. Data came from
4,556 transects at 1,844 sites, from 55°S to 78°N latitude, and 74 ecoregions
and 11 realms (39). Details of fish census methods, data quality, and
diver training are in refs. 21, 40, and 50, and an online methods manual
(reeflifesurvey.com). Fish counts per 500-m? transect (2 x 250-m? blocks) and
size estimates were converted to biomass estimates using species-specific
length-weight relationships from Fishbase (www.fishbase.org). Where
length-weight relationships were described in Fishbase in terms of standard
or fork length, equations in Fishbase allowed conversion to total length. Bias
in divers' perception of fish size underwater was corrected using empirical
calibrations (51). Length-weight coefficients from similar-shaped close rel-
atives were used for species whose length-weight relationships were not
available in Fishbase.

Selection of Variables Used in Models. As the primary response variable in all
of our analyses, we focused on fish biomass rather than productivity because
productivity is estimated from biomass and temperature, and is thus a more
derived variable. The inclusion of temperature in the equation to estimate
productivity also precludes a rigorous test of the effect of temperature on
productivity. Biomass is a logical metric of many ecosystem functions per-
formed by fishes because it is tightly linked to many components of me-
tabolism and productivity (23).

From the diver surveys we computed two estimates of fish diversity per
transect: species density (richness) and functional trait diversity. An inherent
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challenge to estimating biodiversity effects on biomass from observational
data is the inherent positive correlation between estimated species richness
and the number of individuals sampled, obscuring the direction of causality
between abundance (or biomass) and richness. We derived estimates of
species richness that account for this dependency using fixed-coverage
subsampling (52). This approach first computes a rarefaction curve for a given
survey by randomly sampling individuals from the survey and calculating for
each such subsample the probability that adding a new individual will add a
new species; this then allows, by rarefaction (of high-richness samples) or ex-
trapolation (of low-richness samples) a measure of sample completeness: that
is, the proportion of the total number of individuals in the community that
belong to species represented in the survey (52). Once this process is com-
pleted, survey richness is compared at a common (fixed) value of coverage that
can be estimated reliably from all samples in the dataset. We used a value of
99% coverage (completeness), meaning that for any survey a new individual
fish added to a survey would have a 99% probability of belonging to a species
already represented on the survey. This criterion was met by 97% of the sur-
veys in our dataset; the remaining surveys were discarded from the analysis
either because they sampled too few individuals or too many individuals of the
same species (e.g., a large school of one species) to construct a reliable rare-
faction curve. By accounting for the dependence of richness on sample size,
the fixed-coverage estimate of richness minimizes the possibility that observed
correlations between richness and biomass result simply from larger samples
(higher fish densities) capturing more species. This coverage-based estimate
of richness yields conservative estimates of the importance of diversity to
biomass; fitting the same models with raw number of species recorded per
transect produced substantially higher partial coefficients for effect of rich-
ness on biomass (S/ Appendix, Table S1).

Second, we estimated functional diversity based on data on eight traits and
using Rao’s quadratic entropy (Q). Rao’s Q is not constrained to increase with
increasing richness (53), and thus can be treated as an independent predictor
of diversity in our analyses. Functional diversity was further transformed by
1/(1 — Q) to express it in comparable units to species richness: that is, the ef-
fective number of functionally unique species in the sample (54). The eight
traits used to calculate functional diversity (S/ Appendix, Table S3) came from
the database used by Stuart-Smith et al. (40); details of trait assignment and
values are provided in that report. Traits were chosen to encompass attributes
known to influence functional roles in a fish assemblage, including life history,
trophic position, behavior, and habitat associations (S/ Appendix, Fig. S5B).

We assembled data on 25 environmental and human-impact variables taken
from the Bio-ORACLE dataset (55), a comprehensive, uniform, high-resolution
global dataset of geophysical, biotic, and climate rasters. Bio-ORACLE data on
SST, photosynthetically active radiation, and surface chlorophyll (chl a) were
remotely sensed, taken from monthly level 3 preprocessed data from the
Aqua-MODIS and SeaWiFS satellites at a ~9.2-km spatial resolution. Other
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water-quality parameters, including dissolved nutrients, were spatially inter-
polated based on data from in situ surface measurements in the World Ocean
Database 2009 (56). An index of human population was calculated by fitting
a smoothly tapered surface to each settlement point on a glp00g world
population density grid using the quadratic kernel function described by
Silverman (57). Populations were screened for a density greater than 1,000
people per 0.04° cell and the search radius was set at 3.959°.

To reduce the list of predictor variables to a more manageable set, we first
conducted a random forest analysis to identify those with the most explanatory
power (SI Appendix, Fig. S2). Random forest analysis is a machine-learning
technique that is insensitive to underlying distributions, collinearity, or inter-
actions among variables, and thus is ideal for ranking closely related or in-
teracting variables (58). Because random forests can be sensitive to overfitting,
we pruned the forest to 100 trees based on visual assessment of change in
mean-square error with increasing number of trees. We then selected 12 of
the top variables to use as the starting point for linear modeling, choosing in
decreasing order of explanatory power (percent change in mean-square error
of the model based on random permutations of that variable), with the ex-
ception that we excluded variables describing local conditions, like algal cover
and pollution because these had relatively few measured observations and
were largely interpolated. We then subjected the chosen predictor variables to
variance inflation factor analysis to assess collinearity. After removing the
predictor with the highest value (minimum SST, variance inflation factor =
52.3), the remaining 11 variables had variance inflation factor values < 4 and
were retained in the global model. The centering and scaling of predictors
used to generate the final linear models and corresponding path coefficients
should also alleviate the influence of collinear variables. The final list of pre-
dictors retained for model building included: log-estimated species richness,
functional diversity, log human population index, mean annual SST, salinity,
survey depth, log phosphate concentration, range in annual SST, log chloro-
phyll concentration, log photosynthetically active radiation, and log
nitrate concentration.

Modeling Approach. We used two general approaches to analyze controls on
global reef fish biomass. First, we evaluated controls on fish biomass using
hierarchical linear models, including the 11 predictor variables that emerged
from our variable selection process described above. Fish biomass was modeled
at the site level, with the response variable being mean total biomass of fish per
survey at a site; the random effect of site was nested within ecoregion and
realm, and the intercept of estimated richness was allowed to vary among
ecoregions. This model structure was used in separate analyses of fish biomass
at the global level, in temperate versus tropical regions, by trophic level, and for
large fish (>35 c¢m) specifically.

Second, to obtain a more integrated picture of the direct and indirect
influences on global fish biomass, we conducted confirmatory path analysis
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based on piecewise fitting of component hierarchical linear mixed-effects
models (59, 60). The global-path model was nearly saturated in the sense
that the component model for each endogenous variable included paths
from all exogenous variables plus remaining endogenous variables, with the
proviso that the model was nonrecursive (i.e., with no reciprocal paths be-
tween the same variables). Thus, nitrate and phosphate were modeled as a
function of all other abiotic variables plus human population; richness and
functional diversity were modeled as a function of all abiotic variables plus
human population, and biomass was modeled as a function of all 11 vari-
ables (Fig. 1 and S/ Appendix, Fig. S1). The overall path model was evaluated
using Shipley’s test of directed separation (59), which yields a Fisher’s
C statistic that can be compared with a y>-distribution. If the resulting
P value is >0.05, then the model can be said to adequately reproduce the
hypothesized causal network.

To examine how the richness-biomass relationship varied geographically,
we fit the richness-biomass relationship separately for each of the world’s
68 marine ecoregions (39) for which we have sufficient survey data, using a
hierarchical model and allowing the slope of the richness effect to vary by
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ecoregion. We then extracted the slope estimates representing the richness—
biomass relationships among ecoregions and plotted them as a function of
sampling effort (number of surveys per ecoregion), ecoregion mean richness,
and ecoregion environmental characteristics.
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