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Abstract: Marine soundscapes consist of cumulative contributions by diverse sources of sound
grouped into: physical (e.g., wind), biological (e.g., fish), and anthropogenic (e.g., shipping)—each
with unique spatial, temporal, and frequency characteristics. In terms of anthropophony, shipping has
been found to be the greatest (ubiquitous and continuous) contributor of low-frequency underwater
noise in several northern hemisphere soundscapes. Our aim was to develop a model for ship noise in
Australian waters, which could be used by industry and government to manage marine zones, their
usage, stressors, and potential impacts. We also modelled wind noise under water to provide context
to the contribution of ship noise. The models were validated with underwater recordings from
25 sites. As expected, there was good congruence when shipping or wind were the dominant sources.
However, there was less agreement when other anthropogenic or biological sources were present
(i.e., primarily marine seismic surveying and whales). Off Australia, pristine marine soundscapes
(based on the dominance of natural, biological and physical sound) remain, in particular, near offshore
reefs and islands. Strong wind noise dominates along the southern Australian coast. Underwater
shipping noise dominates only in certain areas, along the eastern seaboard and on the northwest
shelf, close to shipping lanes.

Keywords: marine soundscape; ship noise; wind noise; whale song; fish chorus; Australian EEZ

1. Introduction

The oceans abound with natural physical sounds (from wind, rain, polar ice, and
seismic activity), biological sounds (from crustaceans, fishes, and marine mammals),
and anthropogenic sounds (from transport, construction, offshore exploration, and min-
ing). Soundscapes naturally change over time because of temporal cycles in weather
(e.g., cyclones and annual monsoon [1,2]) and animal behaviour (e.g., diurnal foraging
patterns, lunar spawning, seasonal mating, and annual migration [3–6]). However, in many
habitats, soundscapes further change with patterns of human presence (e.g., temporary
construction or summer recreation [7]) and some have changed steadily over time with
increasing intensity of anthropophony (e.g., due to shipping [8]).

In 1996, the European Commission identified air-borne noise as one of the main
terrestrial environmental issues in Europe, having been neglected compared to chemical
pollution [9]. Subsequently, the Commission enacted sound mapping as an important
step to assess and manage sound exposure levels in urban areas [10]. A little later, the
issue of underwater ocean noise received similar attention, being declared a pollutant,
and with underwater sound monitoring and mapping being suggested [11]. Nowadays,
underwater noise footprints of individual anthropogenic operations are commonly mapped
for environmental impact assessments (e.g., [12–14]). Longer-term, large-scale marine
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sound mapping has focussed on ship noise [15–17], but may also include other sources,
such as seismic airguns and explosives [18].

Shipping is a global contributor to ocean noise and, over the past five decades, has
caused a steady increase in underwater low-frequency (10–100 Hz) ambient sound levels in
many marine regions [19–24]. This is of concern, because ship noise causes behavioural and
acoustic responses, auditory masking, and stress in marine animals [25–28]. Hence, various
studies have mapped ship noise and overlain the resulting maps with marine habitat maps
to identify areas of concern (hotspots; high animal density and high noise) [29] and areas
of opportunity (high animal density and low noise) [30] for marine spatial planning.

A problem with ship noise maps is that they often lack validation against in situ
measurements. These maps may have several sources of error in the ship positions and
routes, source spectra and levels, sound propagation models, and hydro- and geoacoustic
parameters required by the models. As well, the spatial (depth and range) and temporal
grid over which the models operate introduces uncertainty. In fact, lack of knowledge
on the physical environment (i.e., hydroacoustic parameters of the water and geoacoustic
parameters of the upper seafloor) is often the limiting factor in sound propagation model
accuracy [14,31]. Model validation is essential to confirm accuracy and to support the use
of a sound map for management decisions [32].

Finally, underwater anthropogenic noise needs to be put into context. How does it
compare to natural, pervasive noise as from wind? Sertlek et al. [18] found that shipping
inserted the greatest amount of acoustic energy into the Dutch North Sea and far exceeded
that of wind. Similarly, Farcas et al. [32] showed that ship noise exceeded wind noise under
water near major ports and shipping lanes, and around industrial sites in the Northeast
Atlantic. However, southern hemisphere oceans have a reputation of being less impacted by
anthropogenic sounds, largely due to a lower ship density [33]. Thus, wind may supersede
ship noise in parts of the southern oceans. Here, we model underwater sound in the
Australian Exclusive Economic Zone (EEZ) from ships and wind over a 6-month austral
winter period, and validate the model with 6-month recordings from 25 stations. We chose
the winter months as this is the peak of baleen whale presence (e.g., [34–36]). The aim
is to enable a better understanding of where shipping noise is likely to be a significant
contributor to the marine soundscape and thus, a potential stressor to marine life.

2. Materials and Methods

In a nutshell, we used ship tracks from Automatic Identification System (AIS) logs
and underwater source spectra from the literature. On a 5 km × 5 km grid over the
Australian EEZ, we modelled underwater sound propagation from all source cells (i.e.,
cells that contained ships) to all surrounding receiver cells over a 100 km radius. We
then integrated sound exposure over the austral winter. The computational effort was
managed by (1) splitting the EEZ into 28 acoustic zones, in which sound propagates in
similar ways [37], hence, where a similar model may be set up, and (2) using a neural
network to cluster all source-receiver transects within a zone into 64 groups of bathymetry
transects, and modelling sound propagation only for cluster centroids. An overview of the
process step-by-step is given in Appendix A. Wind noise was not propagated, but simply
computed based on hourly wind speed data in each cell.

All GIS analysis was done with a combination of ArcMap (version 10.5, ESRI, Red-
lands, CA, USA) and R (Version 4.03, R Core Team, Vienna, Austria). Noise modelling
and validation was done in MATLAB (Version 2020b, The MathWorks Inc., Natick, MA,
USA). We commenced with a GIS layer of the Australian marine bathymetry, gridded to
5 km × 5 km [38].

2.1. Ship Data

Data on ship type, size, position, and speed were obtained from Automatic Identifica-
tion System (AIS) logs managed by the Australian Maritime Safety Authority (AMSA). AIS
data were extracted for the period 1 April 2015–30 September 2015. Ships were grouped
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into five classes based on their length only (and not by type or function; e.g., tanker versus
passenger ferry): <25 m, ≥25–<50 m, ≥50–<100 m, ≥100–<200 m, and ≥200 m. The regu-
larity of the AIS location reporting depends on location and time, and the data we used
was subsampled to provide locations, at most, every 5 min. From this data, ship tracks
were interpolated by dead reckoning to intervals of 60 s if two successive AIS positions met
criteria based on the time between the polls and the straightness of the vessel’s path (as per
Appendix B in [39]). For each ship track, the time spent in each grid cell was computed, and
time was summed over all ships belonging to the same class, yielding a grid of cumulative
time spent in each cell over the 6-month period, by ship class.

Underwater ship noise source spectra were taken from the Research Ambient Noise
Directionality (RANDI) model [40] and integrated into full-octave bands: ≥10–<20 Hz,
≥20–<40 Hz, ≥40–<80 Hz, ≥80–<160 Hz, ≥160–<320 Hz, ≥320–<640 Hz, ≥640–<1280 Hz,
and ≥1280–<2560 Hz (Figure 1a). The broadband (10 Hz–2.6 kHz) source levels were: 148,
160, 172, 187, and 193 dB re 1 µPa m, for the five classes, respectively.
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Figure 1. (a) Underwater ship noise source levels as full-octave band levels (OBL) for ships of lengths <25 m (Class 1),
≥25–<50 m (Class 2), ≥50–<100 m (Class 3), ≥100–<200 m (Class 4), and ≥200 m (Class 5); (b) Power spectral density levels
(PSD) of wind noise under water at wind speeds 1–3 kn (Beaufort 1; curve 1), 4–6 kn (Beaufort 2; curve 2), 7–10 kn (Beaufort
3; curve 3), 11–21 kn (Beaufort 4–5; curve 4), 22–47 kn (Beaufort 6–9; curve 5), and ≥48 kn (≥Beaufort 10; curve 6).

2.2. Wind Data

Hourly data on surface wind speed (10 m altitude) were obtained over a similar
6-month period (1 April 2012–30 September 2012) from the Bureau of Meteorology and
CSIRO [41], based on the NCEP Climate Forecast System [42]. The data varied in spa-
tial resolution (4, 10, and 24 arcminute grids), which we projected and re-sampled to a
5 km × 5 km UTM grid. Over all grid cells, wind speed varied between 0.5 and 30 m/s
(i.e., 1–58 kn). Wind speeds were binned to match the sea states represented in the ‘Wenz
curves’ [43] and noise spectra were assigned to each wind speed bin (Figure 1b). The ‘Wenz
curves’ were converted to linear power spectral density, then integrated over frequency,
before applying 10log10 to yield broadband mean-square sound pressure levels. Expressed
as root-mean-square sound pressure levels, the associations became: 79 dB re 1 µPa for
≥1–<4 kn, 87 dB re 1 µPa for ≥4–<7 kn, 92 dB re 1 µPa for ≥7–<11 kn, 99 dB re 1 µPa for
≥11–<22 kn, 105 dB re 1 µPa for ≥22–<48 kn, and 113 dB re 1 µPa for ≥48 kn.

2.3. Acoustic Zones

The Australian EEZ had previously been broken up into 28 ‘acoustic zones’ (Figure 2),
whereby each zone was characterised by a unique set of hydroacoustic parameters of the
water (i.e., sound speed profiles), geoacoustic parameters of the seafloor (i.e., thickness of
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the sediment layer, density, compressional sound speed and attenuation, and shear sound
speed and attenuation), and bathymetric parameters (i.e., water depth and slope) [37]. The
idea was to set up one sound propagation environment for each zone and then model all
of the ships in that zone.
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Figure 2. Map of the marine acoustic zones of the Australian EEZ [37].

2.4. Source-Receiver Transects

Within each zone, all of the grid cells that had a cumulative ship time > 0 (no matter
the ship class) were identified. From each of these ‘source cells’, 36 radials were cast at
10-degree intervals. The bathymetry was extracted along each of these radials in 5 km steps
out to a maximum range of 100 km, yielding thirty-six 100 km source-receiver transects
around each source. A bathymetry reading at 2.6 km range from the centre of each source
cell was added, representing the mean distance between two random points inside a square
(i.e., 0.5214 times the edge length [44]). If a transect hit land, all subsequent bathymetry
samples were set to ‘not a number’ along this 100 km transect. If a source sat near a zone
boundary, then the 100 km transects were extracted with bathymetry from the neighbouring
zone or from a 100 km buffer around the outside of the EEZ.

All of the transects from all of the source cells (of all ship classes) within a zone were
passed to an unsupervised Kohonen neural network (i.e., a self-organizing map, SOM) with
900 neurons [45] (also see [13], where this SOM was previously used to cluster bathymetry
transects). The neural net sorted the transects into 900 groups, based on their bathymetric
shape. Further grouping was achieved by k-means clustering allowing for 64 clusters [46].
Cluster centroids were computed as the arithmetic mean of all transects within one cluster
(see examples for Zone 16 in Figure 3). Sound propagation was modelled along each of the
64 centroids within one zone.
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2.5. Sound Propagation Model

Sound propagation over each centroid bathymetry was modelled with RAMGeo
in AcTUP V2.8 [47] (https://cmst.curtin.edu.au/products/underwater/ accessed on:
27 March 2021) based on zone-specific acoustic environments consisting of three layers: the
water column, an unconsolidated surface sediment layer, and a consolidated calcarenite
sediment layer as a half space. Water column parameters included the zone’s mean sound
speed profile [37] and water density profile. Representative temperature and salinity data
were extracted from the World Ocean Atlas [48,49] to calculate water densities based on
the UNESCO formula for sea water density [50]. Unconsolidated surface sediment layers
throughout the EEZ comprised predominantly fine material (silt-sand) with sufficiently low
shear wave speeds (<250 m/s) to allow modelling as a fluid. Hence, unconsolidated surface
sediment parameters only included the zone-specific layer thickness, compressional sound
speed, compressional wave attenuation, and density [37]. Surface sediment layer thickness
was estimated as 0.5 m for zones within the sediment-starved carbonate platform [51].
Surface sediment thickness in the remaining zones appears variable [52–57], and so was
modelled as 2 m.

https://cmst.curtin.edu.au/products/underwater/
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In contrast to the surface sediment layer, calcarenite acts as an elastic material with
a shear sound speed of 1400 m/s resulting in important propagation effects [51]. While
RAMGeo is a parabolic equation for fluid seabeds, reasonable results can be obtained
by using an equivalent fluid approximation with reflection coefficients representative
of the elastic model [58]. The procedure to find an equivalent fluid approximation for
each zone included (a) creating an environment with calcarenite as an elastic material
(see [51] for geoacoustic properties), (b) creating an environment with calcarenite as a
fluid layer starting with a compressional sound speed of 1250 m/s and a compressional
wave attenuation of 4.5 dB/λc, (c) calculating the reflection coefficients for each modelled
frequency for both environments with the reflection coefficient model BOUNCE [59], and
(d) adjusting the fluid layer parameters until a representative equivalent had been reached
(Figure 4).
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Figure 4. Example of the reflection coefficients of an elastic model (blue line) and a representative
fluid model (green line) calculated with BOUNCE at 125 Hz.

RAMGeo modelled sound propagation loss for the centre frequencies of eight full-
octave bands between 10 and 2000 Hz over a range of 100 km and up to 7100 m depth,
which is more than the maximum water depth (6388 m) of the EEZ. The depth and range
resolutions were 10 m. The source depth for all ships was chosen as 5 m below the sea
surface. An example RAMGeo output at 640 Hz for the 64 centroid bathymetries of Zone
16 is shown in Figure 5. The bathymetry itself is just visible as a black line, below which
propagation loss was greatest. The colours vary from 60 dB propagation loss (dark red)
to 110 dB (dark blue). Several patterns are obvious: Convergence zones appeared over all
deep bathymetries, leading to low propagation loss (i.e., high received levels) near the sea
surface about 60 km from the source (i.e., clusters 6, 11, 26, 32, 41, 52, 53, 55, 59, 60, and
64). Over upwards-sloping bathymetries, propagation loss was greatest (e.g., clusters 1,
4, 19, 35, 37, 54, and 58). Over downwards-sloping bathymetries, sound may reflect into
the deep-ocean sound channel, which has an axis at about 1 km depth off Australia. Once
inside the channel, sound may propagate over vast ranges at very little additional loss
because of no further seafloor (and to a lesser extent, sea surface) interactions (i.e., clusters
12, 13, 25, 36, and 49). Finally, RAMGeo does not include frequency-dependent absorption
and so this additional loss was applied outside of and after RAMGeo [60].
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Figure 5. Plots of propagation loss (PL) as a function of range and depth along the 64 centroid bathymetries from Zone 16,
for a frequency of 640 Hz. The darkest red corresponds to 60 dB and the darkest blue to 110 dB. X-axes are range (km) and
Y-axes are depth below the sea surface (km); both are scaled linearly.

2.6. Accumulation of Received Levels

Within each zone, one ship class was treated at a time. The source cells corresponding
to one ship class were found, thirty-six 100 km radials were cast at 10-degree intervals
around each source cell, and bathymetry was extracted along each radial and sampled in
5 km steps; the mean distance between a ship and a receiver of 2.6 km within the source
cell was inserted at the beginning. In other words, source cells were assigned a received
level at 2.6 km. Then, stepping through the source cells for this ship class in this zone,
for each of the 36 radial transects, the best matching centroid bathymetry was found. In
fact, as the SOM had been trained with all source-receiver transects from all ship classes in
this zone, finding the ‘best matching centroid’ reduced to simply looking up into which
cluster this transect originally went. Then, for each frequency modelled, propagation loss
(PL) along this centroid was recovered and subtracted from the corresponding octave band
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source level (SL) plus the cumulative time in dB re 1 s (with T in units of second) of this
ship class in this source cell, yielding received levels (RL):

RL = SL + 10 log10(T) − PL

In this equation, SL is a number, the octave band source level expressed as a mean-
square pressure level [dB re 1 µPa2] at the modelled frequency. The duration term is also a
number [dB re 1 s]. PL [dB], however, is a matrix with values in depth and range. Therefore,
RL is a matrix containing received sound exposure levels (SEL) [dB re 1 µPa2s] as a function
of range and depth. There was one such RL matrix for each frequency.

To change from the polar coordinates (in which sound propagation was modelled)
to the Cartesian grid of the EEZ, RL was interpolated to the 5 km grid of the EEZ, at
each depth. Including frequency as an additional dimension, this yielded a 4-dimensional
matrix of longitude, latitude, depth, and frequency, covering the entire EEZ. The matrix
was populated cumulatively by summing sound exposure (i.e., in linear, not logarithmic
terms) over all 36 transects about each source cell, and then over all source cells, before
taking 10 log10 again to yield cumulative sound exposure levels (C-SEL).

2.7. Ship Noise Map

Broadband sound exposure levels were computed by summing sound exposure over
frequency, thereby reducing the matrix to three dimensions, then converting to dB. A further
reduction to two dimensions was achieved by finding the maximum sound exposure level
over the top 200 m, representing the ‘worst case’ of exposure for animals that dive over
this depth [61]. One such map is presented for each ship class, as well as cumulatively over
all five classes. These maps of cumulative sound exposure level were accumulated over six
months encompassing the austral winter. They can be read as average mean-square sound
pressure level (SPL) maps by subtracting the 6-month duration in dB re 1 s:

SPL = C-SEL − 10 log10(183 d × 24 h/d × 60 min/h × 60 s/min/s) = C-SEL − 72 dB re 1 s

2.8. Wind Map

The wind map was produced by converting the hourly root-mean square sound
pressure levels to linear mean-square sound pressures, then integrating over time, and
converting back to decibel. 10 log10(3600) was added to account for the number of seconds
per hour, yielding cumulative sound exposure levels from wind at each cell over the
6-month winter period.

2.9. Comparison between Ship and Wind Noise

For comparison, the cumulative sound exposure levels from wind were subtracted
from those of ships (summed over all classes) in every grid cell, and plotted, to show in
which geographic regions one dominated over the other. We also added the modelled
sound exposures from ships and wind, then converted to decibel, to plot the combined
ambient noise exposure levels over the 6-month period.

2.10. Validation

Archival underwater acoustic recordings from the northwest, west, south, and south-
east of Australia were used in an attempt to validate the modelled noise maps. These data
were collected by autonomous recorders [62] deployed over winter between 2006 and 2017.
All recorders had been moored on the seafloor, and sampled at 6 kHz, 5 min every 15 min.
Most of these datasets were collected while the passive acoustic observatories of Australia’s
Integrated Marine Observing System (IMOS) were operational and are thus available from
the Australian Ocean Data Network (AODN) (https://acoustic.aodn.org.au/acoustic/
accessed on: 15 March 2021).

Long-term spectral averages (LTSA) were computed in 5 min windows and integrated
over frequency (10–2000 Hz) and time (1 April–30 September) to yield cumulative sound

https://acoustic.aodn.org.au/acoustic/
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exposure. LTSAs were visualised in the software CHORUS [63] to provide an overview of
the soundscape and its contributors over multiple weeks to months at a time. Spectrograms
with a resolution of 1 s (50% overlap) were computed to zoom into any 5 min sample
when the sound sources were not immediately identifiable in the LTSAs. Power spectral
density percentile plots (in which the nth percentile gives the power spectral density level
exceeded n% of the time, at each frequency) helped identify the dominant contributors to
the winter soundscapes [64].

3. Results

Australia-wide maps of ship noise C-SEL (by class) over the period 1 April 2015–
30 September 2015 are shown in Figure 6. Cumulative sound exposure levels over all
classes are also plotted. Wind noise C-SEL, the level difference between ship noise C-SEL
and wind noise C-SEL, and the combined C-SEL of ship and wind noise are shown in
Figure 7. Hyperlinks to the data can be found in the Data Availability section.

Validation

Modelled C-SELs of ship and wind noise are compared to measured C-SELs from the
validation datasets in Table 1. There is good agreement (to within 3 dB) between model
and measurement noise levels at sites 9 (NW Shelf, WA, Australia), 16 (Bremer Canyon,
WA, Australia), and 25 (Tuncurry, NSW, Australia). The former two were dominated
by strong wind, the latter by ships. Figure 8A shows almost continuous strong wind at
the Bremer Canyon site, a faint Antarctic blue whale (Balaenoptera musculus intermedia)
chorus throughout winter, peaking in May, and distant passes of ships. The cumulative
energy from wind dominates and is the reason for the good agreement between model and
measurement. Figure 8B shows briefer periods of strong wind off Tuncurry and a distant
Antarctic blue whale chorus. The dominant feature of this soundscape were numerous
passes of ships at close range, and this is the reason for the good agreement between model
and measurement at this site.

Disagreement between model and measurement noise levels at other sites was due
to unaccounted, additional, non-targeted noise contributions to the soundscape: marine
animals and industrial operations. Figure 9 provides an overview of the biological con-
tributors to the soundscape. The stereotypical sounds of Omura’s whales (Balaenoptera
omurai); Antarctic blue whales; pygmy blue whales (Balaenoptera musculus brevicauda); the
unidentified source of the spot call, fin whales (Balaenoptera physalus); dwarf minke whales
(Balaenoptera acutorostrata), and humpback whales (Megaptera novaeangliae) have been well
described in the literature; as have Australian fish choruses [65–67]. These animals dom-
inated the winter soundscapes near islands and reefs (sites 1, 4, 6, 9, 12, 14, 15, 17 and
18). Examples of soundscapes almost free from ships but noisy with animals are shown in
Figures 10 and 11. Examples of soundscapes affected by anthropogenic noise are shown in
Figure 12. At the time of recording, seismic surveying was the most common anthropogenic
source that we did not model.

We were able to determine C-SEL variability over time at nearby sites. Winter record-
ings at sites 17 (2016) and 18 (2017) differed in C-SEL by 1 dB; these sites were only 80 m
apart. Similarly, sites 7 (2006) and 8 (2010) were 4 km apart and the C-SEL differed by 1 dB.
Moreover, sites 14 (2014) and 15 (2016) were 4 km apart and the C-SEL differed by 1 dB,
showing good consistency over 1–4 years at nearby sites. Sites 19–24 were all within 3 km
of each other. Recordings were from 2012, 2014, 2015, 2015, 2016, and 2017, respectively.
The two simultaneous sets differed by 1 dB in measured C-SEL. The 2014 set had the lowest
C-SEL with 179 dB re 1 µPa2s, and one of the 2015 sets had the highest C-SEL at 185 dB re
1 µPa2s, indicating the level of variability that may be expected from such in situ recordings
over multiple years. There was no linear trend.



J. Mar. Sci. Eng. 2021, 9, 472 10 of 28J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 10 of 27 
 

 

 
Figure 6. Maps of cumulative sound exposure levels (C-SEL) from shipping in the Australian EEZ, by ship class, and 
cumulatively over all classes. Maximum received C-SEL over the top 200 m of water were picked, representing a ‘worst 
case’ for animals that dive within this depth. Sound exposure was accumulated over 183 days (1 April 2015–30 September 
2015). Levels can be converted to average mean-square sound pressure levels by subtracting 72 dB re 1 s. Note that the 
colour bars all start at 80 dB but the highest levels differ, reflective of the peak C-SEL for each class. The final map also 
shows 200 m and 3 km bathymetry contours. 

Figure 6. Maps of cumulative sound exposure levels (C-SEL) from shipping in the Australian EEZ, by ship class, and
cumulatively over all classes. Maximum received C-SEL over the top 200 m of water were picked, representing a ‘worst
case’ for animals that dive within this depth. Sound exposure was accumulated over 183 days (1 April 2015–30 September
2015). Levels can be converted to average mean-square sound pressure levels by subtracting 72 dB re 1 s. Note that the
colour bars all start at 80 dB but the highest levels differ, reflective of the peak C-SEL for each class. The final map also
shows 200 m and 3 km bathymetry contours.
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Figure 7. Maps of modelled wind noise within Australia’s EEZ during winter 2012 (1 April–
30 September: top), ship C-SEL less wind C-SEL (middle), and C-SEL from ships and wind combined
(bottom). The black dots identify underwater recording stations used for validation. To convert to
mean sound pressure level, subtract 72 dB re 1 s.
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Table 1. Site ID, location, year, measured C-SEL and SPL, modelled C-SEL from ships, wind, and combined, C-SEL difference between model and measurement, and rough description of
the soundscape.

ID Location Longitude Latitude Winter
C-SEL [dB
re 1 µPa2s]
Measured

SPL [dB re 1
µPa]

Measured

Ship C-SEL
[dB re 1
µPa2s]

Modelled

Wind C-SEL
[dB re 1
µPa2s]

Modelled

Ship + Wind
C-SEL [dB
re 1 µPa2s]
Modelled

C-SEL
Difference
Measured-
Modelled

[dB]

Notes

1 Bonaparte
Gulf WA 128.2 −13.1 2012 174 102 144 170 170 4

dominated by
Omura′s whale

chorus throughout
winter; some fish
choruses; strong

wind periods;
some ships;

distant seismic
survey

2 NW Shelf 121.9 −14.1 2008 192 120 140 167 167 25
dominated by

industrial noise at
the time

3 NW Shelf 122.2 −14.3 2008 184 112 154 167 167 17

dominated by 3
seismic surveys at

different ranges
covering entire

winter

4 NW Shelf 124.9 −14.4 2007 176 104 148 166 166 10

dominated by fish
choruses, very

little
anthropophony;

pristine

5 NW Shelf 121.3 −15.5 2013 172 100 151 168 168 4

3 seismic surveys
overlapping in

time at different
ranges; Omura’s

whales and
humpback whales
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Table 1. Cont.

ID Location Longitude Latitude Winter
C-SEL [dB
re 1 µPa2s]
Measured

SPL [dB re 1
µPa]

Measured

Ship C-SEL
[dB re 1
µPa2s]

Modelled

Wind C-SEL
[dB re 1
µPa2s]

Modelled

Ship + Wind
C-SEL [dB
re 1 µPa2s]
Modelled

C-SEL
Difference
Measured-
Modelled

[dB]

Notes

6 NW Shelf 115.9 −19.4 2013 177 105 155 170 170 7 strong humpback
whale song

7 NW Shelf 115.2 −19.9 2006 183 111 157 170 170 13
dominated by

seismic surveys all
winter

8 NW Shelf 115.3 −19.9 2010 184 112 160 170 170 14 strong industrial
noise throughout

9 NW Shelf 115.4 −20.2 2010 172 100 160 170 170 2

several strong fish
choruses and

periods of strong
wind; pristine

10 NW Shelf 113.9 −20.2 2012 184 112 155 169 170 14
a lot of industrial
noise and seismic

survey

11 NW Shelf 114.8 −20.6 2010 186 114 153 169 170 16

dominated by
industrial noise

and seismic
surveys, near and

far

12 NW Shelf 114.8 −21.4 2010 180 108 157 169 169 11

dominated by
humpback whale
and fish choruses,
also dwarf minke
chorus; pristine

13 NW Shelf 115.0 −21.5 2010 177 105 157 168 168 9

industrial noise,
fish choruses
throughout,

humpback whales
from 1 Aug.
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Table 1. Cont.

ID Location Longitude Latitude Winter
C-SEL [dB
re 1 µPa2s]
Measured

SPL [dB re 1
µPa]

Measured

Ship C-SEL
[dB re 1
µPa2s]

Modelled

Wind C-SEL
[dB re 1
µPa2s]

Modelled

Ship + Wind
C-SEL [dB
re 1 µPa2s]
Modelled

C-SEL
Difference
Measured-
Modelled

[dB]

Notes

14 Perth Can
yon WA 115.0 −31.8 2014 180 108 164 172 172 8

dominated by
pygmy blue whale
chorus, also strong

fish chorus
throughout; fin
whales in June;

spot call in
June–July;

humpback whales
in Sept.

15 Perth Can
yon WA 115.0 −31.9 2016 179 107 164 172 172 7

dominated by
pygmy blue whale
chorus, also strong

fish chorus
throughout; fin
whales in June;

spot call in
June–July;

humpback whales
in Sept.

16 Bremer
Canyon WA 119.6 −34.7 2015 175 103 158 172 172 3

quiet soundscape
with blue whale

and spot call
chorus and wind;
distant shipping
only noticeable
<5% of the time
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Table 1. Cont.

ID Location Longitude Latitude Winter
C-SEL [dB
re 1 µPa2s]
Measured

SPL [dB re 1
µPa]

Measured

Ship C-SEL
[dB re 1
µPa2s]

Modelled

Wind C-SEL
[dB re 1
µPa2s]

Modelled

Ship + Wind
C-SEL [dB
re 1 µPa2s]
Modelled

C-SEL
Difference
Measured-
Modelled

[dB]

Notes

17 Kangaroo Isl.
SA 135.9 −36.1 2016 180 108 156 173 173 7

dominated by
Antarctic blue

whale chorus; spot
calls; fish; strong
wind; very few

ships

18 Kangaroo Isl.
SA 135.9 −36.1 2017 179 107 156 173 173 6

dominated by
choruses of

Antarctic blue
whales, pygmy

blue whales, spot
calls, and fish

19 Portland VIC 141.2 −38.5 2012 181 109 167 173 174 7

strong wind and
ships; Antarctic

blue whale chorus
entire winter;

strong spot call in
Aug.

20 Portland VIC 141.2 −38.5 2014 179 107 167 173 174 5

3 overlapping
whale choruses
(Antarctic blue,

pygmy blue, spot
call); wind and

ships

21 Portland VIC 141.2 −38.5 2015 184 112 167 173 174 10

strong wind;
strong fish;

Antarctic blue
whale chorus for

nearly entire
winter in the ship
noise band; spot
call in July–Aug.
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Table 1. Cont.

ID Location Longitude Latitude Winter
C-SEL [dB
re 1 µPa2s]
Measured

SPL [dB re 1
µPa]

Measured

Ship C-SEL
[dB re 1
µPa2s]

Modelled

Wind C-SEL
[dB re 1
µPa2s]

Modelled

Ship + Wind
C-SEL [dB
re 1 µPa2s]
Modelled

C-SEL
Difference
Measured-
Modelled

[dB]

Notes

22 Portland VIC 141.2 −38.5 2015 185 113 167 173 174 11

Antarctic blue
whale chorus

entire winter; spot
call; strong fish;
strong wind and

ships

23 Portland VIC 141.2 −38.5 2016 180 108 167 173 174 6

broad ship noise
hump at 50 Hz;

choruses of
Antarctic blue
whale; pygmy

blue whale; spot
call, and fish

24 Portland VIC 141.2 −38.5 2017 181 109 167 173 174 7

Antarctic blue
whale chorus and

fish all winter;
some strong
pygmy blue

whales; many
ships

25 Tuncurry
NSW 152.9 −32.3 2016 181 109 177 172 178 3

full of ships; blue
whale choruses in

the background
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Figure 8. LTSAs [dB re 1 µPa2/Hz] near (A) the Bremer Canyon, WA, site 16, and (B) Tuncurry, NSW, site 25. The contri-
butions from ships, wind, and Antarctic blue whales (Balaenoptera musculus intermedia) are marked in red, green, and black, 
respectively. Only a few ships are marked in (A). 
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Figure 8. LTSAs [dB re 1 µPa2/Hz] near (A) the Bremer Canyon, WA, site 16, and (B) Tuncurry, NSW, site 25. The
contributions from ships, wind, and Antarctic blue whales (Balaenoptera musculus intermedia) are marked in red, green, and
black, respectively. Only a few ships are marked in (A).
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Figure 9. LTSAs and spectrograms [dB re 1 µPa2/Hz] showing (A) an Omura’s whale chorus and evening fish chorus at 
site 1; (B) Three Omura’s whale calls and a fish chorus at site 5 (this specific example is free from ships and wind); (C) An 
Antarctic blue whale chorus and evening fish chorus at site 22; (D) Four Antarctic blue whale Z-calls and a fish chorus at 
site 23; (E) Pygmy blue whale song in front of the Antarctic blue whale chorus and a fish chorus at site 24; (F) Three spot 
calls at site 19; (G) Fin whale song at site 14; and (H) Humpback whale song at site 6. Note the changing x- and y-scales. 
All panels but H use a logarithmic y-scale. H uses a linear y-scale to stress the great bandwidth of humpback whale song 
(100 Hz–>3 kHz) in comparison to the narrow bandwidth of ship noise in this example (<100 Hz), resulting in humpback 
whales dominating the C-SEL after integration over frequency. An animal (fish?) biting on the hydrophone is marked by 
the white arrow. Sound from whales, fish, ships, and wind are marked in black, white, red, and green, respectively. 
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Figure 9. LTSAs and spectrograms [dB re 1 µPa2/Hz] showing (A) an Omura’s whale chorus and evening fish chorus at
site 1; (B) Three Omura’s whale calls and a fish chorus at site 5 (this specific example is free from ships and wind); (C) An
Antarctic blue whale chorus and evening fish chorus at site 22; (D) Four Antarctic blue whale Z-calls and a fish chorus at
site 23; (E) Pygmy blue whale song in front of the Antarctic blue whale chorus and a fish chorus at site 24; (F) Three spot
calls at site 19; (G) Fin whale song at site 14; and (H) Humpback whale song at site 6. Note the changing x- and y-scales.
All panels but H use a logarithmic y-scale. H uses a linear y-scale to stress the great bandwidth of humpback whale song
(100 Hz–>3 kHz) in comparison to the narrow bandwidth of ship noise in this example (<100 Hz), resulting in humpback
whales dominating the C-SEL after integration over frequency. An animal (fish?) biting on the hydrophone is marked by
the white arrow. Sound from whales, fish, ships, and wind are marked in black, white, red, and green, respectively.
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Figure 10. Winter soundscape at site 12. (A) Power spectral density percentiles showing domination by humpback whales 
from late June and fishes throughout. The curves follow the shape of the biological spectra 75% of the time (within black 
ellipse). The characteristic shape of wind is only seen in the absence of whales (lowest two percentiles within green ellipse); 
(B) LTSA of an evening fish chorus (within white box). A distant dwarf minke whale chorus (thin horizontal lines inside 
black ellipse) occurred in June–July. (C) LTSA showing humpback whales (within black box) and fish (within white el-
lipse). 

Figure 10. Winter soundscape at site 12. (A) Power spectral density percentiles showing domination by humpback whales
from late June and fishes throughout. The curves follow the shape of the biological spectra 75% of the time (within black
ellipse). The characteristic shape of wind is only seen in the absence of whales (lowest two percentiles within green ellipse);
(B) LTSA of an evening fish chorus (within white box). A distant dwarf minke whale chorus (thin horizontal lines inside
black ellipse) occurred in June–July. (C) LTSA showing humpback whales (within black box) and fish (within white ellipse).
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Figure 11. (A) Power spectral density percentiles of the winter soundscape at site 15 dominated by pygmy blue whales 
(within black box). The characteristic spectral shape of a fish chorus is seen at 2–3 kHz in the 1st and 5th percentiles 
(dotted); (B) LTSA of the pristine soundscape at site 4 exhibiting multiple fish choruses at night (within white box), whose 
intensities vary with the phase of the moon; (C) Spectrogram of the soundscape at site 1 showing at least two simultaneous 
whale species (Omura’s whales at 20–50 Hz and one other at 50–3000 Hz, uncertain) and a fish chorus at 300–500 Hz. 

Figure 11. (A) Power spectral density percentiles of the winter soundscape at site 15 dominated by pygmy blue whales
(within black box). The characteristic spectral shape of a fish chorus is seen at 2–3 kHz in the 1st and 5th percentiles (dotted);
(B) LTSA of the pristine soundscape at site 4 exhibiting multiple fish choruses at night (within white box), whose intensities
vary with the phase of the moon; (C) Spectrogram of the soundscape at site 1 showing at least two simultaneous whale
species (Omura’s whales at 20–50 Hz and one other at 50–3000 Hz, uncertain) and a fish chorus at 300–500 Hz.
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Figure 12. (A) Power spectral density percentiles of the winter soundscape at site 23 showing that pygmy blue whales 
(black box) were present the entire 6 months (because the spectral shape of their song is seen even in the 99th percentile, 
meaning it did not become quieter than this). However, the strongest sound in this soundscape came from ships (identified 
by the broad and smooth spectral hump between 20 Hz and 200 Hz; red ellipse). The spot call was also strong at this site 
(marked by the black arrow). The fish chorus at 800–2000 Hz (dotted box) was present the entire time as well; (B) Power 
spectral density percentiles from site 2 being entirely dominated by broadband industrial noise of unknown origin at this 
time; (C) Spectrogram of a strong seismic survey temporarily present at site 3; no other sounds were visible. 

  

Figure 12. (A) Power spectral density percentiles of the winter soundscape at site 23 showing that pygmy blue whales
(black box) were present the entire 6 months (because the spectral shape of their song is seen even in the 99th percentile,
meaning it did not become quieter than this). However, the strongest sound in this soundscape came from ships (identified
by the broad and smooth spectral hump between 20 Hz and 200 Hz; red ellipse). The spot call was also strong at this site
(marked by the black arrow). The fish chorus at 800–2000 Hz (dotted box) was present the entire time as well; (B) Power
spectral density percentiles from site 2 being entirely dominated by broadband industrial noise of unknown origin at this
time; (C) Spectrogram of a strong seismic survey temporarily present at site 3; no other sounds were visible.
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4. Discussion

The aim of our project was to develop a model for underwater ship noise in the
Australian EEZ that could be used by industry and government to manage marine zones,
their usage, stressors, and potential impacts. To put ship noise into context, we also
modelled natural noise from wind under water. The models are based on numerous
assumptions and involve a lot of averaging in space and time, leading to uncertainty. We
therefore validated the models as a whole by comparing modelled sound exposure levels
to measured underwater sound levels from 25 acoustic data sets collected over a 12-year
span. Agreement was good when the underwater soundscape mostly contained the two
sources modelled: ships and wind. Agreement was poorer when sound sources were
missed (i.e., not modelled): seismic surveying, whales, and fishes.

Ship presence and movement were based on AIS data from the winter of 2015. Ships
logged their positions at irregular time intervals, requiring that we interpolate between
successive logs. We applied criteria for speed and direction continuity before straight-line
interpolation, and where these were not met, we accepted holes in tracks, leading to an
underestimation of ship time in the corresponding cells. We further had very few vessels
in the smallest class (<25 m), as these mostly private recreational vessels do not log AIS
positions. We therefore clearly underestimated their underwater noise contribution, in
particular to coastal soundscapes. In addition, we did not take into account ships just
outside of the EEZ and so underestimated noise levels near the EEZ boundary. Given that
most AIS data were available for the larger and noisier vessels, we chose a monopole source
depth corresponding to larger vessels (5 m) and applied this to all vessels in the model, for
simplicity. The introduced uncertainty in modelled received levels is perhaps greater in
winter (which we modelled) than summer, given all of our sound speed profiles exhibited
a shallow surface duct of variable depth. Accounting for different source depths for the
different vessel classes would require modelling sound propagation over the 64 cluster
centroids in each zone multiple times, which we did not do, but could be done to improve
accuracy. This might be desirable for more localised applications and modelling over
smaller areas than the entire EEZ (e.g., regional seismic surveys or coastal developments).
Placing the monopole at deeper depth than the propeller depth of small vessels during
sound propagation modelling will likely enhance long-range received levels of the smaller,
hence quieter, vessels, which are possibly underrepresented in the AIS data, meaning the
errors do not add but work in reverse. Finally, the source levels produced by the RANDI
model fall within the broadband quartiles reported recently [68]; however, the spectral
shapes might differ. MacGillivray and de Jong [69] very recently showed that the RANDI
model overpredicted source power spectral density below ~250 Hz for bulk carriers,
vehicle carriers, tankers, container ships, and cruise ships, yet underpredicted source
power spectral density above ~250 Hz. This might lead to differential errors in different
regions (deep versus shallow water), depending on the efficiency with which sound below
and above 250 Hz propagates in each environment. Other studies reported RANDI to
overestimate [70,71] or underestimate, particularly above 200 Hz [72]. Underprediction
of source levels by the RANDI model might be more common for the smallest vessels, in
particular those with powerful motors, such as whale-watching boats and tugs [69,73–76].

In terms of the underwater sound propagation model used, the most common source
of uncertainty is a lack of data on the seafloor composition and thus, acoustic proper-
ties. We used typical values from [51], but geoacoustic properties may vary from place
to place. Hydroacoustic data (i.e., temperature, salinity, and sound speed profiles) were
missing in some coastal zones and thus required spatial extrapolation. The equivalent fluid
model applied is only approximate up to grazing angles of 50◦ and thus, more accurate for
long-range propagation modelling. Modelling sound propagation only along bathymetry
cluster centroids, instead of every source-receiver transect, introduced additional uncer-
tainty. However, with a median water depth of 1809 m for all source cells in the entire
EEZ, deviations of individual bathymetries from centroid bathymetries are likely to affect
modelled received levels more in shallow and coastal rather than offshore waters. While
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deviations in bathymetry from cluster centroids may change the pattern of constructive and
destructive interference and thus yield rather variable received levels at specific locations in
space and depth, there will not be a consistent bias in modelled received levels. Modelling
along centroids will lead to both over- and underprediction, depending on range, depth,
and frequency. These effects will be important on a fine spatial scale, but disappear on a
coarse grid. Finally, the received level depends greatly on receiver depth. We chose to plot
maximum received levels over the top 200 m, corresponding to the water layer in which
most baleen whales travel. Any receiver depth (or depth range) may, of course, be picked
from the model results, corresponding to specific animal depths.

The wind model we used was based on the classic review done by Wenz [43]. Other
models, such as the Cato model [77] extend to lower frequencies and thus, yield higher
levels (up to 2 dB) in high sea states. The Cato model would reduce the model-versus-
measurement difference (i.e., improve the wind noise prediction) at the wind-dominated
sites (9, 16).

The map of underwater ship noise was based on AIS data from the year 2015, the map
of underwater wind noise was based on wind data from 2012, and the in situ measurements
were from various years (2006–2017). For a fine-scale model (i.e., small grid size), the exact
positions and types of vessels would matter and therefore, validation with measurements
from different years might be less successful. However, on a coarse grid, fine-scale vari-
ability averages out. For the ship noise map to differ by 3 dB, twice the number of ships
(i.e., twice the power) would be needed. We showed close agreement in measured levels
over consecutive years at the same sites, except when strong temporary sources occurred in
some sets (e.g., industrial exploration) or when more variable, biological sources dominated
in some years.

The geographic grid size chosen for the model might affect the received levels in some
cells and change the ship-to-wind noise ratio. We modelled on a 5 km × 5 km grid, and
so the source cells were assigned a received level at 2.6 km range. A 2.5 km × 2.5 km
grid would have a mean receiver range of 1.3 km. If ships are evenly distributed within a
5 km × 5 km cell, then halving the grid size will increase received levels within the source
cells by 20 log10(2) = 6 dB. The time spent in the source cell, however, will decrease by a
factor 4, or, 10 log10(4) = 6 dB, making up for the increase in received level (i.e., decrease in
propagation range and thus, propagation loss). If ships are unevenly distributed within
the larger grid cell, then changing to a finer grid will yield a net increase in modelled
received noise levels within source cells. In comparison, the modelled noise levels from
wind, being a sheet (rather than monopole) source, will not vary with grid size as wind
speed changes on a much larger spatial scale offshore. Therefore, in areas where shipping
lanes are well-defined and narrow (<5 km wide), ship noise levels may exceed wind noise
levels by more than modelled in this article.

Based on our model and its 25-point validation, the Australian EEZ has a higher
proportion of natural underwater noise from wind over ship noise than the North Sea and
likely other northern hemisphere oceans [18,32]. Part of the Australian marine soundscape
appears pristine, if pristine is defined as an absence of anthropogenic noise and a richness
of biological noise (see also [78]). We have shown that accurate models of the Australian
marine soundscape must include biological sources (i.e., primarily whales and fishes).
Natural biological and physical noise ought to be considered in management frameworks
to provide context (e.g., for noise management in the Southern Ocean [79]).

Our recommendations for future work include the establishment of a databank of
Australian ship source spectra as started by [80], which will allow replacing the RANDI
model with monopole source spectra from actual measurements. We have shown that other
anthropogenic noise sources cannot be excluded in areas and years where these dominate
and their contribution to the marine noise budget should be assessed. Comparing long-term
cumulative sound exposure might not be the quantity most useful to managers. Instead,
sound energy could be integrated over much shorter time frames and maps of % time above
certain management thresholds be plotted [81], which is likely more relevant to biological



J. Mar. Sci. Eng. 2021, 9, 472 24 of 28

receptors than an annual or seasonal integral or average. The different sound sources
have different acoustic features (e.g., ship and wind noise are continuous, while seismic
surveying and pile driving are pulsed) and bioacoustic impact is likely driven by different
acoustic quantities (e.g., sound exposure versus peak pressure [82]). Therefore, different
quantities will have to be mapped for different types of impact. Moreover, these sources
exhibit fundamentally different sound radiation fields, where an underwater explosion is a
monopole, a ship is a dipole, pile driving a line source, and wind a sheet source, requiring
different modelling approaches.
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Appendix A

Step-by-step process of modelling ship noise:

1. Beginning with a GIS layer of the Australian marine bathymetry.
2. Add layers to the grid with ship positions, grouped by ship size (i.e., ship length),

yielding one layer per ship class.
3. Split the EEZ grid into 28 previously determined acoustic zones.
4. For each zone:

a. Find all grid cells that contain ships of any class, cast 36,100 km radials in
10-degree intervals, and extract bathymetry along the radials.

b. Cluster all extracted bathymetries (over all radials around all cells with ships)
with a neural network and subsequent k-means into 64 clusters.

c. Compute sound propagation along each cluster centroid, for the centre frequen-
cies of adjacent octave bands.

d. For each ship size class:
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i. Find the cells that contain ships of this class (source cells), cast 36,100 km
radials in 10-degree intervals, and extract bathymetry along the radials.

ii. For each source cell:

• For each radial:

◦ Look up into which cluster this radial went;
◦ For each frequency:

� Retrieve propagation loss as a function of range and depth.
� Add octave band source level for this ship class.
� Add cumulative time that a ship of this class spent

in this source cell to yield sound exposure level as a
function of range and depth.

� Regrid from polar to Cartesian coordinates.

iii. Accumulate sound exposure over all radials and source cells to yield a
4-d matrix of cumulative sound exposure level as a function of longitude,
latitude, depth, and frequency for each ship class.

e. Accumulate sound exposure over all ship classes.

5. Accumulate this 4-d matrix over all zones, EEZ-wide.
6. Sum over frequency to yield a 3-d matrix of cumulative sound exposure level as a

function of longitude, latitude, and depth.
7. Pick the maximum cumulative sound exposure level over depth to yield a 2-d map of

cumulative sound exposure level versus longitude and latitude.
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