1	A seasonally dynamic estuarine ecosystem provides a diverse prey
2	base for elasmobranchs
3	
4	Sharon L. Every ^{1,2,3} * (0000-0002-3512-2142), Christopher J. Fulton ³ , Heidi R.
5	Pethybridge ⁴ , Peter M. Kyne ¹ , David A. Crook ¹
6	
7	¹ Research Institute for the Environment and Livelihoods, Charles Darwin University,
8	Darwin, Northern Territory 0909, Australia
9	
10	² North Australia Marine Research Alliance, Arafura-Timor Sea Research Facility,
11	Brinkin, Northern Territory 0810, Australia
12	
13	³ Research School of Biology, The Australian National University, Canberra,
14	Australian Capital Territory 0200, Australia
15	
16	⁴ Ocean and Atmosphere, Commonwealth Scientific and Industrial Research
17	Organisation, Hobart, Tasmania 7000, Australia
18	
19	*Corresponding author: slevery2001@yahoo.com.au
20	
21	
22	
23	
24	
25	

26	Acknowledgements
27	This research was conducted on the traditional country of the Bininj and Mungguy
28	people. We gratefully acknowledge the traditional custodians for allowing access to
29	this country. We thank Peter Nichols, Peter Mansour, Grant Johnson, Mark Grubert,
30	Duncan Buckle, Roy Tipiloura, Dominic Valdez, Francisco Zillamarin, Edward
31	Butler, Claire Streten, Kirsty McAllister, Mirjam Kaestli and the crew of R.V.
32	Solander for fieldwork and laboratory assistance and to Martin Lysy (nicheROVER)
33	and Andrew Jackson (SIAR) for their advice and assistance. Charles Darwin
34	University, CSIRO and the North Australia Marine Research Alliance (NAMRA)
35	provided funding, alongside collaborative partnerships in the Marine Biodiversity and
36	Northern Australia Hubs of the Australian Government's National Environmental
37	Research Program (NERP).
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	

51 Abstract

52 Tropical river and estuarine food webs sustain diverse biodiversity values and are 53 important sources of nutrients and energy for connected aquatic and terrestrial 54 ecosystems. High order predators, such as euryhaline elasmobranchs, play critical roles in these food webs, but a lack of detailed information on food web structure 55 56 limits our ability to manage these species within their ecosystems. We analysed stable carbon (δ^{13} C) and nitrogen (δ^{15} N) isotopes (SI) and fatty acid (FA) biochemical 57 tracers from putative prey species in the estuary of the South Alligator River, northern 58 59 Australia. These were compared with existing data on four species of elasmobranch 60 from the system to examine food web structure and infer dietary linkages over wet 61 and dry seasons along an environmental gradient of sites. Layman's SI community 62 metrics indicated that upstream food webs had the greatest trophic diversity and 63 analyses of FAs revealed distinct prev habitat associations that changed seasonally. 64 Mixing models of SI indicated that most Glyphis glyphis and Glyphis garricki had 65 similar fresh water and mid-river diets whilst Carcharhinus leucas and 66 Rhizoprionodon taylori had largely marine signatures. Multivariate analyses of FA 67 revealed some intraspecific differences, although specialisation indices suggested the 68 four shark species are trophic generalists. Our results show that riverine food webs 69 can display complex spatiotemporal variations in trophic structure and that coastal 70 and euryhaline mobile elasmobranchs forage in a range of coastal and freshwater 71 habitats, demonstrating their influence on these food webs. 72

- 73
- 74

75 Introduction

Food webs in tropical floodplain rivers are highly connected, dominated by seasonal
hydrological cycles and typically characterised by short food chains and temporally
variable ecological communities (Douglas et al. 2005; Blanchette et al. 2014).
Euryhaline and coastal elasmobranchs (sharks and rays) provide potentially important
connections across tropical ecosystems due to their mobility and high trophic position,
and are crucial in the maintenance of community structure and ecosystem function in
many estuaries (Last 2002; Every et al. 2017).

84 Estuarine and coastal ecosystems may act as nurseries for sharks (Heupel et al. 2007), afford protection from predation and provide a diverse source of prey (Cvrus and 85 86 Blaber 1992; Heupel et al. 2007). However, many of these ecosystems have been 87 affected by habitat disturbance and fishing pressure (Gallagher et al. 2012; Dulvy et 88 al. 2014) that have contributed to the decline of many estuarine species, including 89 elasmobranchs (Lucifora et al. 2015). In order to conserve and manage these species, 90 there is a need to increase our knowledge of the dietary requirements and potential 91 trophic specialization of euryhaline elasmobranchs (Montoya et al. 2006) to better 92 understand functional differences among species, overlaps in diet and dependencies 93 among species and habitats (Young et al. 2015; Grubbs et al. 2016).

94

Previous work examining dietary composition in tropical euryhaline elasmobranchs
has been largely limited to ubiquitous species such as the bull shark *Carcharhinus leucas* (Matich et al. 2011; Belicka et al. 2012; Daly et al. 2013). However, other
species also comprise important components of the elasmobranch fauna of rivers and
estuaries in the Indo-Pacific, but are not well studied. In northern Australia, there is a

100	paucity of data on the trophic ecology of coastal and euryhaline elasmobranchs, with
101	previous studies focusing on adult to sub-adult (Tillett et al. 2014) and juvenile C.
102	leucas and large tooth sawfish Pristis pristis (Thorburn and Rowland 2008; Thorburn
103	et al. 2014). Some of these studies have used stomach content analysis, which
104	provides direct dietary information, but only across a brief snapshot in time. Stomach
105	content studies may also underestimate the contribution of soft-bodied prey or over-
106	represent certain groups (e.g. crustaceans) due to differential rates of digestion and/or
107	complex temporal patterns in consumption. Advances in techniques such as
108	biochemical analysis of stable isotopes (SI) and fatty acids (FA) in body tissues have
109	allowed for broader time scales of trophic ecology to be explored (MacNeil et al.
110	2005; Hussey et al. 2011; Pethybridge et al. 2011; Couturier et al. 2013; Rohner et al.
111	2013; Every et al. 2016).
112	
113	Stable isotopes of carbon (δ^{13} C) and nitrogen (δ^{15} N) have been widely used to

114 determine niche area and overlap (Vaudo and Heithaus 2011; Every et al. 2017), food

115 web structure (Abrantes and Sheaves 2009; Tilley et al. 2013) and community metrics

across a broad range of ecosystems (Layman and Post 2005; Brind'Amour and

117 Dubois 2013). Isotopic mixing models (Layman and Allgeier 2012; Parnell et al.

118 2013; Tilley et al. 2013) can be particularly useful to trace which prey or prey group

119 (source) is likely to have been consumed by a predator (Peterson and Fry 1987). More

120 recently, complementary FA analyses have also been used to interpret isotopic food

121 web indices, as they provide greater specification of basal sources and can help to

- 122 confirm trophic linkages (Budge et al. 2002; Iverson 2009; Kelly and Scheibling
- 123 2012). The combination of both SI and FA analyses provides a powerful means of

exploring and interpreting the trophic ecology of consumers and associated food webs(Belicka et al. 2012; McMeans et al. 2013).

126

127 The objective of the current study was to explore the structure of a tropical riverine food web in northern Australia to examine seasonal (wet versus dry season) and 128 129 longitudinal patterns of trophic relationships among predator and prey species. SI and FA analyses were conducted on a suite of putative prey species and combined with 130 131 published data on euryhaline (Carcharhinus leucas, Glyphis garricki, G. glyphis) and 132 coastal (Rhizoprionodon taylori) elasmobranchs. A suite of analytical approaches 133 were employed to assess the structure and seasonal variability of food webs at sites 134 ranging from the estuary mouth to the upper estuarine reaches. The results of the 135 study are discussed with regards to temporal and spatial patterns of trophic linkages 136 between predators and their prey, and the importance of riverine ecosystem function 137 as a driver of food webs that support high order predators in estuarine and coastal 138 habitats. 139

140

- 141 Methods
- 142 Elasmobranch and potential prey collection
- 143 Three euryhaline elasmobranch species (*Carcharhinus leucas, Glyphis garricki, G.*

144 *glyphis*) and one coastal species (*Rhizoprionodon taylori*) were collected in the South

- 145 Alligator River, Australia from March 2013 to July 2014 (Table 1) as part of previous
- 146 studies (Every et al. 2016; Every et al. 2017) (Fig. 1). Rhizoprionodon taylori were
- 147 captured by baited line in the mouth of the river and *G. garricki*, *G. glyphis* and *C*.
- 148 *leucas* were collected further upstream, with a combination of gill nets and baited

lines. All sharks were measured and biopsied before being released at the site ofcapture.

151

152	Sampling for prey occurred in the same 4 sites where sharks were collected for an
153	earlier study (Every et al. 2017) over the wet (monsoon) (November – April) and dry
154	(May – October) seasons. Briefly, site 1 was the furthest upstream and had a mean
155	salinity ($\%_0\pm$ SD) during the dry season of 21.9±5.3 and of 0.4±1.5 during the wet
156	season, whilst at site 4 salinity was high in the dry (34.5 ± 0.2) and lower in the wet
157	(17.1±4.3) (Every et al. 2017) (Fig. 1). Prey were captured using a range of sampling
158	methods: a ~5 m wide beam trawl, gill nets (mesh size ranging from $10 - 30$ cm), a
159	cast net, and custom made wire rectangular marine and opera crab pots. Prey species
160	were also caught during gill net and line fishing for sharks. Six putative prey species
161	(Table 1) were chosen for analysis as these: (1) appeared in sufficient numbers to be
162	considered a significant part of the food web; (2) represented a range of trophic levels;
163	and, (3) had been reported previously in the stomachs of study elasmobranchs
164	(Snelson et al. 1984; Simpfendorfer 1998; Thorburn and Morgan 2004; Peverell et al.
165	2006). Prey species consisted of five teleost fishes and one crustacean (Table 1).
166	
167	Tissue sampling & preparation

168 For teleost fishes, only muscle tissue was used so that larger fish could be released,

169 which involved using a scalpel to lift scales (where present) and remove a small

170 square of tissue from the caudal peduncle region. Smaller fish of less than 25 cm total

171 length were euthanized in 20 L of river water using AQUI-S[®] (20 mg/L) (Lower Hutt,

172 New Zealand; sensu Turchini et al. 2011; Matley et al. 2016), and then the right side

173 of the body was filleted to obtain a sample. The invertebrate *Macrobrachium*

174 equidens were also euthanized in the same way before muscle was dissected from

175 within the 2nd to 4th abdominal segments, taking particular care not to include other

176 tissue (e.g. exoskeleton, gut). Elasmobranch muscle tissue was collected from

177 between the second dorsal and the caudal fin, slightly anterior and lateral to the caudal

178 peduncle using a 5 mm biopsy punch (Stiefel) (see Every et al. 2016).

179

180 Immediately after collection, all tissue was stored in liquid nitrogen at –196°C, and

181 within a week transferred to a -20°C freezer until it was freeze-dried for analysis.

182 Preparation of samples was undertaken in the freezer to avoid tissue degeneration. All

183 tissue except muscle was removed and the muscle sample divided and weighed

184 separately for SI and FA analyses. Mean (± standard deviation (SD)) dry sample

185 weight was 1.96±0.16 mg across all prey types.

186

187 Stable Isotope Analysis

188 Prey muscle tissue was freeze-dried to a constant weight and then pulverized using a

189 combination of micro-scissors and a small polyethene pestle, or a coarse pestle and

190 ceramic mortar. Muscle tissue was weighed to between 400-2200 µg. Before

191 elasmobranch muscle tissue was freeze-dried it was rinsed in milli-Q water and

192 sonicated to remove excess urea as per Kim & Koch (2012). Tissue was then weighed

193 to between 400 and 1000 µg. To combust and analyze samples, a SerCon Europa EA-

194 GSL elemental analyzer and Hydra 20-22 isotope ratio mass spectrometer (Sercon

195 Ltd, UK) was used at the Australian Rivers Institute, Griffith University. Relative

196 δ^{13} C and δ^{15} N were calculated using the Peedee Belemnite Carbonate international

197 standards for δ^{13} C and Atmospheric Nitrogen with a precision of (1SD) 0.03 and

198 0.09‰ for δ^{15} N and δ^{13} C, respectively. Due to the low lipid content in the muscle of

199	all tissue, lipid corrections were not necessary except for threadfin catfish N. armiger
200	which had a mean C:N ratio of 4.3 ± 1.1 . This ratio is over the recommended level of
201	3.5 which causes the δ^{13} C to be 3-4‰ to be more negative, therefore the following
202	formula was applied (Post et al. 2007):
203	
204	$\delta^{13}C_{normalized} = \delta^{13}C_{untreated} - 3:32 + 0:99 X C:N$
205	
206	As SI analysis required a smaller amount of tissue, more individuals (cf. to FA
207	analysis) could be examined with this method.

209 Fatty Acid Analysis

210 Prey FAs were quantitatively extracted from muscle tissue via direct transmethylation

211 (Parrish et al. 2015). Fatty acids were liberated from the lipids within the tissue

sample via solvent extraction. Tissues were freeze dried, weighed, and 3 ml of

213 MeOH: hydrochloric acid (HCl): DCM (10:1:1) was added, vortexed and placed in

214 heating block at 85°C for 2 hours. After cooling, 1 ml of milli-Q H₂O was added and

the FA solution was extracted with 1.8 ml of 4:1 hexane:DCM solution and then

216 vortexed for five minutes in a centrifuge to form the lipid bilayer. The upper layer was

- then transferred using DCM and blown down under a constant stream of N₂. The
- 218 extraction process was repeated two more times before a known concentration of
- 219 internal standard was added. Final concentrations of 10 mg lipid to 1.5mL DCM were
- 220 made and stored in a -20°C freezer until further analysis within 7 days of extraction.

221

- A full explanation of elasmobranch muscle tissue analysis can be found in Every et al.
- 223 (2016). Briefly, lipids were quantitatively extracted using the modified Bligh & Dyer

224 (1959) method which is an overnight one-phase extraction process of

- 225 methanol:dicloromethane (DCM);milli-Q water (2:1:0.8 by volume). Saline milli-Q
- water and DCM were added the next day to make the final volume 1:1:0.9. The lower
- 227 phase and solvents were evaporated with a rotary evaporator and remaining lipid
- transported with DCM into a pre-weighed vial, blown down with nitrogen and dried
- to a constant mass. The final concentration in the vials was 10 mg of lipid to 1.5 ml
- 230 DCM, these were then stored in the -20° C freezer till further analysis.
- Transmethylation of elasmobranch lipids followed the same process as prey tissue.
- 232
- 233 Fatty acid composition was quantified by an Agilent Technologies 7890B gas
- chromatograph (GC) (Palo Alto, California USA) and an Agilent Technologies 7683B
- 235 Series auto-sampler. Peaks were quantified using Agilent Technologies ChemStation
- 236 software (Palo Alto, California USA), and identifications confirmed by GC-mass
- 237 spectrometry (GC-MS) using a column of similar polarity to that described above and
- a Finnigan Thermoquest DSQ GC-MS. Fatty acid were converted to a percentage.

FAs with values <0.5% were not included in statistical analysis.

- 240
- 241 Assessment of food web structure
- 242 Stable isotope data was used to calculate Layman's six metrics (Layman et al. 2007)
- 243 of seasonal and spatial trophic diversity in both putative prey and shark consumer
- species across each site and season. The first four metrics are measures of the
- assemblage trophic diversity, whilst the last two measure the relative space between
- each other (Layman et al. 2007). These include (i) the δ^{15} N range (NR), the distance
- 247 between two species with the most enriched $\delta^{15}N$ minus the most depleted $\delta^{15}N$,
- 248 where a larger range generally indicates more trophic levels. (ii) δ^{13} C range (CR), the

249 distance between two species most enriched and depleted δ^{13} C, the larger the range, 250 the more basal resources are used. (iii) Total area (TA), the assemblage combined isotopic niche space occupied indicating the total extent of trophic diversity. This is 251 influenced by extreme values of δ^{15} N and δ^{13} C and should be considered with these 252 values simultaneously. (iv) Centroid distance (CD), the mean Euclidean distance of 253 each species to the isotopic centroid (mean of $\delta^{15}N$ and $\delta^{13}C$ of all species in food 254 web). This is a function of species spacing and is a measure the average degree of 255 256 trophic diversity within a food web. (v) Mean nearest neighbour distance (MNND), is 257 a measure of the density of species packing indicated by the mean Euclidean distance 258 to all species closest neighbour in isotopic space. A large MNND indicates species 259 with more divergent trophic niches. (vi) The standard deviation of MNND (SDNND) 260 measures the evenness of species packing in isotopic space, a low SDNND indicates a 261 more even distribution (Layman et al. 2007). Metrics were calculated using the mean 262 from each species group in the R package SIAR 4.2.2, which uses Bayesian 263 approaches to account for uncertainty in the derived means of convex hulls, removes 264 potential errors and therefore increases the validity in the estimates of community 265 metrics (Jackson et al. 2011). To minimise sample size biases (Jackson et al. 2011) 266 within this analysis some species were omitted in some sites and seasons where n < 5267 individuals for each species (Table 2). All sites and seasons were pooled so that those 268 species where n was < 5 in specific sites could be compared holistically. 269

270 To examine differences in the SI compositions of the putative prey taxa an analysis of

- 271 variance (ANOVA) was used followed by pairwise Tukey tests with Bonferroni
- adjustments for multiple comparisons. Evaluations of Q-Q plots and residual vs fitted

graphs indicated that no data transformations were required to satisfy modelassumptions.

275

276	Permutational analysis of variance (PERMANOVA) was used to explore significant
277	differences between species EFAs in multivariate space. A homogeneity of dispersion
278	test (PERMDISP) revealed an uneven distribution of multivariate variance (p $<$
279	0.01, $F_{df} = 5.40$, 5, 120). However, PERMANOVA has been found to be relatively
280	robust to such dispersion issues (Clarke and Gorley 2006) (e.g. in our case, site or
281	season). In these analyses the PERMANOVA (with 9999 permutations) was used to
282	test for a significant difference between prey, prey and season, prey and capture
283	location (sites 1, 2, 3 and 4) as factors and finally as prey, season and capture location.
284	A pairwise test was also carried out with species and season as the factor. To assist in
285	the interpretation of the PERMANOVA and to visualize these differences a principal
286	coordinate analysis (PCO) was constructed using Euclidean distance resemblance
287	matrix. Vectors were correlated to the ordination structure (at level Pearson $r > 0.1$)
288	were provided for added clarification.
289	
290	To determine which FAs may be unique to each prey species a Dufrêne- Legendre
291	indicator species analysis (R package; labdsv (Roberts 2016)) was applied. This

292 calculates a maximum indicator value for FAs and was based on the relative

293 frequency and association of FAs among and within each species. This was developed

to determine which species could be used as indicators for various habitats, however

- 295 we have used the same calculations to determine which FAs occur more frequently in
- 296 each species therefore our species are the 'habitat' and the FAs are the 'species'
- 297 according to Dufrêne & Legendre (1997). To calculate the indicator value for FAs

- based on the relative frequency and association of FAs within each species we need to
- 299 determine the presence / absence (P_{ij}) of FAs in a species and the abundance of FAs
- 300 in the species (X_{ij}) :
- 301
- 302 Where:
- 303 FA = i
- 304 Species = j
- 305 n_c = number of samples in cluster *c* (for cluster *c* in set *K*)
- $306 \quad f = relative frequency$
- $307 \quad a = abundance of FAs$
- 308 $d_{i,c}$ = Indictor value (IndVal)

$$f_{i,c} = \frac{\sum_{j \in c} P_{i,j}}{n_c}$$

310
$$a_{i,c} = \frac{(\sum_{j \in c} x_{i,j})/n_c}{\sum_{k=1}^{K} ((\sum_{j \in c} x_{i,j})/n_k)}$$

$$d_{i,c} = f_{i,c} \times a_{i,c}$$

313 An indicator value and p – value are assigned to each FA for that particular species.

The addition of the *p* - value, was an adaptation in the R package; labdsv (Roberts

- 315 2016) from the oringnal calculations of Dufrêne & Legendre (1997).
- 316

317

318 Isotope mixing models to investigate prey contributions to sharks

- 319 Mixing models for SI were created using the Bayesian models package MixSIAR
- 320 (Moore and Semmens 2008) in R (R Core Development Team, 2014). These models
- 321 use a Markov chain Monte Carlo (MCMC) resampling routine to calculate

322 uninformed priors based on the data given (we used 10,000 iterations). They were 323 designed to be robust, allow multiple sources to be used and enable priors and 324 uncertainty measures to be included (Moore and Semmens 2008). As recent work has 325 found that more than three sources can undervalue minor dietary items (Brett 2014), prev data was grouped based on the divisions created by their δ^{13} C values. Similar 326 δ^{13} C values such as what was found here have previously been linked to carbon 327 328 sources in tropical riverine waters (including their estuaries and surrounding 329 seagrasses) and so our putative prey species have been classified accordingly (Loneragan et al. 1997). Group 1 prey had δ^{13} C values closer to freshwater signatures 330 and consisted of barramundi Lates calcarifer, rough river prawn Macrobrachium 331 332 equidens and paper head croaker Johnius novaeguineae. Group 2 consisted of king 333 threadfin salmon Polydactylus macrochir and threadfin catfish Neoarius armiger were higher in δ^{15} N than the other species and had δ^{13} C values that were in between 334 estuarine and freshwater signatures whilst Group 3 consisted only of popeye mullet 335 336 *Rhinomugil nasutus*, which had a δ^{13} C value closer to an estuarine signature. Residual errors were included in the model (Parnell et al. 2010) and uncertainties consisted of 337 338 elemental concentrations based on the mass of each tissue (Parnell et al. 2010) and 339 diet discrimination factors (DDF, the fractionation of δ^{15} N and δ^{13} C when passed 340 through a food chain). We used δ^{15} N DDFs estimated from Bunn et al. (2013) who 341 calculated values from a range of species in lotic environments from northern 342 Australia and Papua New Guinea using a regression analysis and comparison of 343 literature. We then compared the feeding behaviours to our species and used the most 344 appropriate DDF values (see Table 2).

345

346 Fatty acid prey-predator linkages

347 Prey EFAs and shark EFAs (see Every et al. (2017) were compared with a main

348 model PERMANOVA and a pairwise PERMANOVA. The fixed factor was species

and a Type III (partial) sum of squares was used for both analyses. To compliment

350 this, similarity percentages (SIMPER) based on Bray Curtis distances (Euclidean

351 distance gives average squared distance not average similarity) was used to calculate

352 the average similarity between the FA profiles of individuals within a species.

353

354 Individual specialisation of fatty acids

355 To explore the degree of individual specialisation we used the elasmobranch FA data 356 from Every et al. (2017) (which was collected in the same time period as food web 357 species) to calculate indices based on Roughgarden (1972). These indices are the 358 proportion of total niche width (TNW) and within individual component (WIC) in fatty acids. These were determined using the R individual specialisation package 359 (RInSP) (Zaccarelli et al. 2013). This test is useful when there are more than two 360 361 variables; therefore, the use of two SIs is not appropriate. Values of TNW/WIC closer 362 to 1 indicate no intraspecific differences whilst 0 suggests a high degree of individual specialization. Diet variation and individual specialization is calculated by forming a 363 364 null hypothesis and then tested with Monte Carlo resampling methods, which also 365 produces a p value. This multinomial sampling, randomly reallocates FA to each 366 species. When statistically significant dietary variation exists, the observed values fall 367 outside the range of null values. When comparing individual specialisation in different species of sharks the mean null value is used as a covariate to avoid variation 368 369 from sampling effects in individual specialisation calculations (Araújo et al. 2011). 370 All FA > 0.5% were included as there is an increase in accuracy when there are more variables associated with each individual (Bolnick et al. 2002; Zaccarelli et al. 2013). 371

2	7	2
J	1	4

Results 374

375 Food web structure and linkages among putative prey taxa

Across all sites there was an overall decrease in Layman's metrics of TA, NR, CR, 376

377 CD and SSD from sites 1 (river mouth) – 4 (upstream), whilst MMND stayed

relatively constant, apart from a slight increase of NR and MMND at site 2 during the 378

379 wet season (Table 3). When all sites were pooled there were distinct differences in all

380 metrics between the dry and wet seasons: $TA = 22.0\pm2.2$ and 33.7 ± 2.7 , $NR = 5.0\pm0.4$,

381 7.0 ± 0.5 and CR = 7.8 ± 0.38 and 9.6 ± 0.5 . Spatial differences were also apparent

382 among sites, with site 1 having higher CR, particularly during the wet season

 (9.1 ± 0.4) compared to the dry season (7.4 ± 0.5) . The number of trophic levels for 383

384 this assemblage remained quite constant across sites except for site 4, which was

very low (1.6±0.3). The trophic structure (MMND metric) of the assemblages 385

386 were largely similar, however this metric doubled from site 1 (3.3 ± 0.3) to site 2

387 (6.0 ± 0.7) during the wet season and was the lowest at site 1 during the dry

388 season (2.3 ± 0.2) .

389

397 that extended past *P. macrochir* (Fig. 2). Species with similar δ^{13} C consisted of *L.*

398 *calcarifer* and *M. equidens* having lower δ^{13} C mean values, *J. novaeguineae* and *N.*

- 399 *armiger* low δ^{13} C and δ^{15} N, and *R. nasutus* had the highest δ^{13} C values (Table 4,
- 400 Fig. 2).
- 401
- 402 Significant seasonal differences were found between the wet and dry δ^{13} C values
- 403 of prey but not δ^{15} N. Capture location was not significant in δ^{15} N (p = 0.08, $R^2 =$
- 404 4.5, $F_{df} = 2.3_{3, 145}$) but was in δ^{13} C ($p = \langle 0.01, R^2 = 17.5, F_{df} = 10.3_{3, 145}$). Significantly
- 405 different pairs were found between sites 1 and 3 (t = 0.5, p < 0.01), sites 1 and 4 (t =
- 406 1.0, p < 0.01), and sites 1 and 2 (t = 0.7, p < 0.01).
- 407

408 Fourteen EFAs with > 0.5 % representation within tissues appeared to separate 409 across three broad divisions within these potential prev taxa (Table 4, Fig. 3 and 410 see Online Resource 3 Fig. 2). One group consisted largely of *M. equidens*, the 411 second, *P. macrochir*, *R. nasutus* and *J. novaeguineae* and the third *N. armiger* and 412 *L. calcarifer*. However, it should be noted that individual *N. armiger* were 413 dispersed over all groups whilst individual *R. nasutus* were spread amongst groups of *J. novaeguineae*, *P. macrochir* and *N. armiger*. The main EFA that 414 separated *M. equidens* from the other prey species was 18:206, whilst *L.* 415 416 calcarifer were divided into two subgroups by a number of EFA; however, the 417 most influential were 20:2 ω 6 and 22:4 ω 6. The larger group of *N. armiger* was 418 separated principally by 20:206, J. novaeguineae 20:506 and Polydactylus 419 *macrochir* and 22:5 ω 6 separated *R. nasutus*.

420

421	Significant differences in EFA profiles were found amongst prey species and
422	there were significant interactions between species x season and species x
423	capture location; but not between season x capture location (Table 4). Most prey
424	species had an average similarity (from SIMPER) of over 70%, M. equidens had
425	80.8% average similarity, J. novaeguineae 83.5%, L. calcarifer 74.5%, P. macrochir
426	86.5%, Neoarius armiger 75.2% and Rhinomugil nasutus 73.2%. Lates calcarifer and
427	P. macrochir were very similar to each other and could not be separated by their FA
428	profile using the Dufrêne - Legendre indicator species analysis. Johnius novaeguineae
429	had the most FAs (6) that resulted in their separation from the other species with p -
430	values <0.05, N. armiger and R. nasutus had four, whilst M. equidens had three
431	(Table 4; see Online Resource 1 and 2 for indicator values and specific FAs).
432	
433	Trophic linkages between sharks and putative prey taxa
434	Stable isotope analysis indicated that the majority of <i>C</i> . <i>leucas</i> had δ^{13} C values that
435	were higher than most prey species within the South Alligator River system with R.
436	nasutus being the most notable exception (Fig. 2). However, some individuals of C.
437	leucas were also isotopically similar to P. macrochir and N. armiger (Fig. 2).
438	<i>Rhizoprionodon taylori</i> were similar in δ^{13} C values to <i>C. leucas</i> and were also similar
439	to R. nasutus and N. armiger. Stable isotope signatures within Glyphis species were
440	similar to many of the prey species, particularly J. novaeguineae, and M. equidens.
441	The majority of G. garricki isotopic values were close to M. equidens, whilst in
442	another group of G. garricki, isotopic values were similar to L. calcarifer.
443	
111	Percentage difference of mean shark diet proportion indicated little difference

445 between the consumption of prey during the wet and dry seasons (Table 6, Fig. 4a).

446 Group 2 (consisting of signatures between estuarine and freshwater) had the most 447 difference $(2.9\pm6.0\%)$ and Group 1 (consisting of freshwater signatures) had the least 448 $(0.6\pm1.4\%)$ (Table 6, Fig. 4a). Differences in prey consumption by shark species 449 appeared to be more important $(3.7 \pm 2.7\%)$ than seasonal variation $(0.8 \pm 1.6\%)$. Carcharhinus leucas consumed prey from Group 2 and 3 (consisting of estuarine 450 451 signatures) whilst R. taylori showed the greater consumption of prey species from 452 Group 3 (Table 6, Fig. 4b). Glyphis garricki and G. glyphis had the highest mean 453 consumption from the freshwater prey group. The two *Glyphis* species consumed the 454 most from Group 1 although G. garricki had the highest proportion $(67.8\pm14.3\%)$ 455 compared to G. glyphis (Table 6, Fig 4b). Interestingly, the two Glyphis species 456 consumed the lowest amount from Group 2, yet both consumed almost one third of 457 prey from Group 3. However, *R. taylori* consumed the most of the four sharks from 458 within Group 3.

459

460 Significant differences in EFA profiles were found among all shark and prey species 461 $(p < 0.01, F_{df} = 20.26_9)$. Pairwise tests of EFA profiles further confirmed this for all 462 species pairs (all p < 0.05) except for G. garricki and G. glyphis (p = 0.4), which was not found to be significantly different. A PCO indicated that Carcharhinus leucas, G. 463 464 garricki and G. glyphis all had a diverse array of EFAs (Fig. 2) and shared FAs with 465 P. macrochir, L. calcarifer, J. novaeguineae, M. equidens, N. armiger and R. nasutus. 466 However, there were slight interspecific differences between the sharks. Glyphis 467 garricki and G. glyphis had high relative levels of 18:2006, which was not present in 468 C. leucas, whilst G. glyphis also had high contributions of 20:5ω3. Each of these FAs 469 were also present in *P. macrochir*, *J. novaeguineae*, *L. calcarifer*, *M. equidens*, *R.* 470 nasutus and N. armiger.

472 Intraspecific variation in sharks

473	Most shark species had over 65.0% average similarity of FAs among individuals (C.
474	leucas (67.4%), G. garricki (68.9%), G. glyphis (67.7%) and R. taylori (77.7%))
475	according to similarity percentages (SIMPER). The four shark species had similar
476	FAs WIC/TIC indices and only C. leucas (0.90 ($p < 0.01$)) and G. garricki (0.92 ($p < 0.02$)
477	0.01)) had significant values, whereas <i>G. glyphis</i> (0.94, <i>p</i> =0.28) and <i>R. taylori</i>
478	(0.95 $p=1$) had values that were not significant. Only <i>G. garricki</i> could be
479	compared for seasonal differences due to the low n-value of the other shark
480	species caught during the wet season. This comparison indicated very little
481	change between the wet (0.92, $p < 0.01$) and dry season (0.93, $p < 0.93$).
482	
483	Discussion
484	Spatial and seasonal differences in stable isotopes and fatty acids were found in the

485 trophic range and diversity of putative prey of four species of sharks that utilise the 486 South Alligator River. Whilst there were significant differences between putative prev 487 species, some of their biochemical tracer compositions overlapped suggesting consumption of similar basal resources amongst some putative prey. Lates calcarifer 488 and *N. armiger* exhibited large intraspecific variation in δ^{15} N values, indicating that 489 490 individuals may be consistently feeding at different trophic levels. This suggests that 491 these species are consuming a range of basal sources and that there is a high degree of 492 omnivory or consumption of omnivores amongst prey species (Jepsen and Winemiller 493 2002). Although specific indices of specialization were not calculated for prey 494 species, the average similarity between prey species was high and only a limited 495 number of FAs separated prey species in the Dufrêne - Legendre indicator species

analysis. This may suggest that the prey community displays trophic generalism. This
high degree of omnivory and trophic generalism may support the general fifth
principal of river and wetland food webs in the wet–dry topics as outlined by Douglas
et al. (2005). This principal suggests that food chains are short, that species often feed
across a number of trophic levels, and that there is relatively low dietary specialisation
in tropical rivers (Douglas et al. 2005).

502

503 Elasmobranchs also exhibited similar patterns in SI and FA values and the 504 comparison of both biochemical tracers demonstrated likely dietary links between the 505 putative prey and elasmobranchs. The similarity in TNW/WIC indices and relative 506 high average similarity of FA profiles between all four shark species indicated that 507 they were generalist consumers of coastal and estuarine prey species with little 508 seasonal change. This may be a result of the diverse range of prey available in 509 estuaries and coastal areas (Douglas et al. 2005). Although there was a broad range of 510 prey collected in this study, we only selected for analysis the six species that were in 511 the greatest abundance. Being taxonomically rich but dominated by only a few 512 species may be common in tropical rivers (Douglas et al. 2005). Generalist feeding 513 was also observed in C. leucas based on their movement data from the Shark River 514 Estuary, Florida, USA, this study found that elasmobranch species opportunistically 515 captured prey entering the river from the flood plains (Matich and Heithaus 2014). 516 Although abundant prey was unlikely to have been missed it is possible that the 517 collective signatures of individuals from a range of species with low n-values may 518 have significant influence on the diet of elasmobranchs.

519

520 Seasonal and spatial patterns of trophic range and dietary diversity among putative
521 prey taxa

522 The influx of organic sources at certain points along the river may explain the spatial 523 differences in prey in the South Alligator River (Pusey et al. 2015). For example, site 524 1 had the greatest range of basal sources based on the CR. This site was the furthest 525 upstream and may have had a mixture of terrestrial, freshwater and some limited marine basal sources, as has been found in other estuaries (Atwood et al. 2012). 526 527 During the wet season in the upper river (sites 1 and 2), the trophic ecology of species 528 appears to overlap more than during the dry season. This is perhaps a function of the 529 changes in abiotic factors such as salinity and changes in hydrological patterns 530 (Jardine et al. 2015; Pusey et al. 2015), which could similarly explain a slight 531 decrease in spatial trophic diversity from the upper to lower river reaches. This can 532 arise because some species do not favour the mid-reaches of the river as habitat 533 (Pusev et al. 2015) due to fluctuating conditions (e.g. salinity) caused by both 534 seasonal and tidal influences (Warfe et al. 2011; Jardine et al. 2015). 535 536 Like many tropical rivers (Winemiller and Jepsen 1998; Roach et al. 2009; Ward et al. 537 2016), season influenced the isotopic and FA composition in putative prev species 538 and thus the trophic structure of the river. However, seasonal shifts in individual FA 539 and SI biotracers were not reported previously in these elasmobranchs at this study 540 site (Every et al. 2017). This may indicate that sharks are moving to consume their 541 preferred prey or that they are consuming a variety of prey from a range of sites which 542 may make identifying seasonal change difficult. Other large predators such as the 543 estuarine crocodile Crocodylus porous and L. calcarifer across northern Australia

were also found to consume prey whose basal sources were from outside their capturelocation (Jardine et al. 2017).

546

547 Links between putative prey to elasmobranchs

Large variance in δ^{15} N may be attributed not only to omnivory or consumption of 548 549 omnivores but may also be related to ontogenetic change as L. calcarifer has been 550 found to switch from the consumption of smaller teleosts and Macrobrachium spp at 551 40 cm total length, to Ariidae and Polynemidae prey alongside an increase in consumption of Mugilid and Engraulid fishes (Davis 1985). Whilst specific dietary 552 553 studies have not been conducted for N. armiger, dietary ontogenetic change has been 554 reported in other *Neoarius* species (Dantas et al. 2012). Alternatively, this may be 555 attributed to the varied diet of *N. armiger* that is reported to include teleosts, 556 polychaetes and crustacea (Blaber et al. 1994). Due to the similarities and differences 557 of biochemical tracers amongst the prey assemblage it appears that *P. macrochir* may 558 feed on J. novaeguineae, as their EFAs overlap (high in 22:506) and P. macrochir had higher δ^{15} N than J. novaeguineae. Neoarius armiger was the only teleost species 559 560 that showed similarities to the biochemical profile of the crustacean *M. equidens*,

561 which was very different to other putative prey species in that it was high in $18:2\omega 6$.

562 This difference could also be a result of differing discrimination rates between

- 563 crustaceans and teleost fish (Caut et al. 2009).
- 564

565 Based on both biochemical tracers it appears that not all sharks consumed putative

566 prey species where they appeared to be sympatric. *Carcharhinus leucas* was a prime

567 example of this, with most individuals caught at site 1 not appearing to consume prey

568 with freshwater δ^{13} C values that were caught at these same sites. Although *C. leucas*

569	had the highest mean δ^{13} C value, the mixing model indicated that they are consuming
570	the majority of prey species from Group 2 (50.6 \pm 19.4) and 3 (46.1 \pm 18.4), which
571	consisted of species with higher δ^{13} C values (more estuarine signatures) such as <i>N</i> .
572	armiger. Similarly, other Neoarius spp. have been commonly reported in the stomach
573	content analysis of populations of C. leucas in other estuarine ecosystems (Snelson et
574	al. 1984; Thorburn and Rowland 2008). Carcharhinus leucas had high δ^{13} C values,
575	which suggests that they are likely to be consuming other estuarine prey species such
576	as larger L. calcarifer (Heithaus et al. 2013) from these or nearby coastal locations
577	that were not caught in this study. This discrepancy in SI signatures versus capture
578	location suggests high levels of prey movement may be occurring, or that a maternal
579	signature is present within the shark consumers (Every et al. 2017). Maternal
580	signatures may occur as neonate elasmobranchs have lipid reserves in their livers,
581	which comes from the maternal food source (Olin et al. 2011). When neonates begin
582	to feed, the signatures switch back to the neonates own biochemical signature (Olin et
583	al. 2011).

585 Fatty acids indicated that there were dietary links between a small cluster of C. leucas and N. armiger, and L. calcarifer and R. nasutus. These individuals had a size range 586 587 of 69.5 - 99.5 cm, which is approximately the same size range of the entire cohort so 588 ontogenetic change is unlikely to explain these differences. Interestingly, when the 589 other sharks were included amongst the prey, C. leucas were very similar to G. 590 garricki and R. taylori FAs, which may suggest that C. leucas is consuming them or 591 they are consuming similar prey. Although difficult to evaluate without investigating 592 stomach contents, elasmobranchs (including other C. leucas) have been found in the 593 gut of adult and juvenile C. leucas along with a variety of teleosts fish (Snelson et al.

1984) and in Australia *C. leucas*, crocodiles, pigs and birds (Thorburn and Rowland2008).

596

597	Stable isotope mixing models of <i>R. taylori</i> suggest that they are also consuming the
598	majority of Group 3 prey (with more estuarine signatures) (72.7 \pm 17.5) with some
599	from group 2 (13.4 \pm 16.2) and only a very small proportion of prey from Group 1
600	(with more riverine signatures) (13.9. \pm 1.4). The EFA profiles also support the
601	isotope mixing model as they suggest that R. taylori are consuming J. novaeguineae,
602	P. macrochir, N. armiger with some individuals being close to R. nasutus. Previous
603	studies of <i>R. taylori</i> indicate that they consume marine species (Simpfendorfer 1998;
604	Munroe et al. 2014), however it appears that they also consume prey that have
605	assimilated biotracers from freshwater habitats. This is interesting, as R. taylori was
606	not found to enter the river in a movement study in Queensland (Munroe et al. 2015).
607	Some of <i>R. taylori</i> 's EFA profiles did not appear to have dietary links to any of the
608	putative prey species and so may be consuming other marine prey similar to in the
609	stomach content analysis conducted by (Simpfendorfer 1998). Therefore, there may
610	be some degree of resource partitioning occurring amongst the population that was
611	not observed here, perhaps because the sampling effort was concentrated in the
612	estuary.
613	

013

Other shark species that can tolerate riverine conditions are likely to access more
riverine prey. For example, our study indicated that *G. garricki* are primarily

- 616 consuming species from the freshwater prey group and had a low degree of
- 617 intraspecific differences. This was supported by *G. garricki* EFA profiles, which
- 618 indicated links with the freshwater and estuarine prey *L. calcarifer* and *N. armiger*

and possibly *P. macrochir* and *J. novaeguineae*. Corroborating these findings were

- 620 the stomach contents of 6 individual *G. garricki* where *Neoarius* spp. and *P*.
- 621 macrochir were also found (Thorburn and Morgan 2004). Although G. glyphis was
- 622 very similar to G. garricki, they consumed more estuarine prey (Group 3) $(33.9 \pm$
- 623 18.5% compared to $30.6 \pm 14.0\%$) and less freshwater prey ($61.2 \pm 19.2\%$ compared
- to $67.9 \pm 14.3\%$). Their EFA were associated with only *L. calcarifer* and *N. armiger*
- 625 and the stomach contents of seven individuals indicated *Nematalosa erebi*, the
- 626 freshwater prawn *M. spinipes* and spines of catfish were also found (Peverell et al.
- 627 2006). Both of the *Glyphis* species showed a reliance on riverine resources,
- 628 particularly *G. garricki* due to their apparent preference for upriver putative prey
- 629 species. In contrast, C. leucas and R. taylori had strong links to the mid-river prey and
- 630 very low proportion of freshwater prey according to SI mixing models. This suggests
- that all four shark species have important trophic connections to the riverine
- 632 environment.
- 633

634 Conclusions

Seasonal and spatial differences in biochemical tracers within sharks and their 635 636 putative prey were found in the South Alligator River with the most trophic diversity 637 and biochemical tracer variance in the upper reaches of the estuary. This variation in 638 dietary biochemical tracers indicates the complexity of food webs in this system and 639 appears to be a common feature of tropical estuaries (Magnone et al. 2015). All of the 640 sharks examined appeared to be generalist feeders, which may be due to the diverse range of putative prey species available or breadth of basal resources present in this 641 642 relatively undisturbed ecosystem (Pusey et al. 2015). Further exploration is required

to explain why individual shark biotracers did not show evidence of seasonal change,yet prey species did.

645

646	Another key finding was that C. leucas had predominantly marine-based signatures,
647	yet they were captured 80 km upstream. Direct investigation of the movements of
648	sharks (e.g. via acoustic telemetry) would be informative for the interpretation of the
649	biochemical tracer data collected in our study. Another potential way to further our
650	knowledge of the trophic ecology of these species using FAs would be to conduct
651	feeding trials so that the differing physiological responses to individual FAs can be
652	calculated in dietary mixing models similar to isotopes. Nonetheless, the results of the
653	current study demonstrate the importance of ecological processes in rivers as drivers
654	of the food webs that support euryhaline elasmobranchs in tropical estuaries and
655	coastal ecosystems. Recognition of the trophic connectivity that exists among rivers,
656	estuaries and coastal waters is critical to the effective conservation and management
657	of biodiversity in these ecosystems.
658	
659	
660	
661	Ethical Approval
662	All procedures performed in this study were conducted with the approval of the
663	Charles Darwin University Animal Ethics Committee (A12016), in conjunction with
664	permits from NT Fisheries S17/3268 and Kakadu National Park (RK805).
665	
666	

667

668 **References**

669	Abrantes, Kátya, and Marcus Sheaves. 2009. Food web structure in a near-pristine
670	mangrove area of the Australian Wet Tropics. Estuarine, Coastal and Shelf
671	Science 82. Elsevier Ltd: 597-607. doi:10.1016/j.ecss.2009.02.021.
672	Araújo, Márcio S, Daniel I Bolnick, and Craig A Layman. 2011. The ecological
673	causes of individual specialisation. <i>Ecology letters</i> 14: 948–58.
674	doi:10.1111/j.1461-0248.2011.01662.x.
675	Atwood, Trisha B., Tracy N. Wiegner, and Richard A. MacKenzie. 2012. Effects of
676	hydrological forcing on the structure of a tropical estuarine food web. <i>Oikos</i> 121:
677	277–289. doi:10.1111/j.1600-0706.2011.19132.x.
678	Belicka, Laura L, Philip Matich, Rudolf Jaffé, and Michael R Heithaus. 2012. Fatty
679	acids and stable isotopes as indicators of early-life feeding and potential maternal
680	resource dependency in the Bull Shark Carcharhinus leucas. Marine Ecology
681	Progress Series 455: 245–256. doi:10.3354/meps09674.
682	Blaber, Stephen J M, David T Brewer, and John P Salini. 1994. Diet and dentition in
683	tropical ariid catfishes from Australia. Environmental Biology of Fishes 40: 159-
684	174. doi:10.1007/BF00002543.
685	Blanchette, Melanie L, Aaron M Davis, Timothy D Jardine, and Richard G Pearson.
686	2014. Omnivory and opportunism characterize food webs in a large dry-tropics
687	river system. Freshwater Science 33. University of Chicago PressChicago, IL:
688	142–158. doi:10.1086/674632.
689	Bligh, E G, and W J Dyer. 1959. A rapid method of total lipid extraction and
690	purification. Canadian Journal of Biochemistry and Physiology 37. NRC
691	Research Press Ottawa, Canada: 911–917. doi:10.1139/o59-099.
692	Bolnick, Daniel I, Louie H Yang, James A Fordyce, Jeremy M Davis, and Richard
693	Svanbäck. 2002. Measuring individual-level resource specialization. <i>Ecology</i> 83:
694	2936–2941. doi:10.1890/0012-9658(2002)083[2936:MILRS]2.0.CO;2.
695	Brett, Michael T. 2014. Resource polygon geometry predicts Bayesian stable isotope
696	mixing model bias. <i>Marine Ecology Progress Series</i> 514: 1–12.
697	doi:10.3354/meps11017.
698	Brewer, D. T., S. J.M. Blaber, J. P. Salini, and M. J. Farmer. 1995. Feeding Ecology
699	of Predatory Fishes from Groote Eylandt in the Gulf of Carpentaria, Australia,
700	with Special Reference to Predation on Penaeid Prawns. Estuarine, Coastal and
701	Shelf Science 40: 577–600. doi:10.1006/ecss.1995.0039.
702	Brind'Amour, Anik, and Stanislas F Dubois. 2013. Isotopic diversity indices: How
703	sensitive to food web structure? Edited by David William Pond. <i>PLoS ONE</i> 8.
704	Public Library of Science: e84198. doi:10.1371/journal.pone.0084198.
705	Budge, Suzanne M, Sara J Iverson, W Don Bowen, and Robert G Ackman. 2002.
706	Among- and within-species variability in fatty acid signatures of marine fish and
707	invertebrates on the Scotian Shelf, Georges Bank, and southern Gulf of St.
708	Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 59: 886–898.
709	doi:10.1139/f02-062.
710	Bunn, Stuart E, Catherine Leigh, and Timothy D Jardine. 2013. Diet-tissue
711	fractionation of 815N by consumers from streams and rivers. <i>Limnology and</i>
712	<i>Oceanography</i> 58: 765–773. doi:10.4319/10.2013.58.3.0765.
713	Caut, Stephane, Elena Angulo, and Franck Courchamp. 2009. Variation in
/14	discrimination factors (Δ 15N and Δ 13C): The effect of diet isotopic values and
715	applications for diet reconstruction. <i>Journal of Applied Ecology</i> 46: 443–453.
/16	do1:10.1111/j.1365-2664.2009.01620.x.

717	Clarke, K R, and RN Gorley. 2006. PRIMER v6 PRIMER-E Ltd. Plymouth, UK.
718	Couturier, Lydie I E, Christoph A Rohner, Anthony J Richardson, Andrea D
719	Marshall, Fabrice R A Jaine, Michael B Bennett, Kathy A Townsend, Scarla J
720	Weeks, and Peter D Nichols, 2013. Stable isotope and signature fatty acid
721	analyses suggest reef manta rays feed on demersal zooplankton. <i>PloS one</i> 8:
722	e77152. doi:10.1371/journal.pone.0077152.
723	Cyrus, Digby P. and Stephen J M Blaber, 1992, Turbidity and salinity in a tropical
724	northern Australian estuary and their influence on fish distribution <i>Estuarine</i>
725	Coastal and Shelf Science 35: 545–563. doi:10.1016/S0272-7714(05)80038-1
726	Daly Ryan Pierre W Froneman and Malcolm I Smale 2013 Comparative feeding
720	ecology of Bull Sharks (<i>Carcharbinus Jeucas</i>) in the coastal waters of the
728	southwest Indian Ocean inferred from stable isotone analysis PLoS ONF 8: 1-
729	11 doi:10.1371/journal.pone.0078229
720	Dantas David Valenca Mario Barletta Jonas de Assis Almeida Ramos André
730	Dicardo Araújo Lima and Monica Ferreira da Costa 2012 Seasonal diet shifts
731	and overlap between two sympatric catfishes in an estuarine pursery <i>Estuarias</i>
732	and Coasts 36: 237, 256, doi:10.1007/s12227.012.0563.2
733	$U_{IIII} = U_{IIII} = U_{IIIII} = U_{IIIIII} = U_{IIIIIIIII = U_{IIIIIIIIIII = U_{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$
734	inland waters of Van Diamon Gulf and the Gulf of Corportaria Australia
735	Lournal of Fish Riology 26: 660, 682, doi:10.1111/j.1005.8640.1085.tb0/207.v
730	Journal of Fish Biology 20. 009–062. uol.10.1111/j.1095-6049.1965.004507.X.
729	food webs in Australia's wet, dry tropies: general principles and implications for
730	monogement Marine and Enclosure Personal 56 CSIDO DUDI ISHING: 220
739	242 doi:10.1071/ME04084
740	542. UOI. 10. 10/1/MF04064.
741	Duffene, M, and F Legendre. 1997. Species assemblages and indicator species. the
742	Dulyy Nicholas K. Soroh I. Fowler, John A Musick, Bachel D. Covenagh, Deter M.
745	Vune Luey P. Herrison, John K. Carlson, et al. 2014. Extinction risk and
744	Kyne, Lucy K Hanison, John K Canson, et al. 2014. Extinction fisk and
745	doi:10.7554/oLife.00500
740	U01.10.7554/CLIIC.00590.
747	Christenber I Fulten 2016 Comparison of fin and muscle tissues for analysis of
740	cinistopher J Futton. 2010. Comparison of fin and muscle dissues for analysis of
749	Marine Biology and Ecology 470: 46, 52, doi:10.1016/j.jombo.2016.02.011
750	Marine Biology and Ecology 4/9: 40–55. doi:10.1010/J.Jellide.2010.02.011.
751	Every, Sharon L, Heidi K Pethyondge, Christopher J Futton, Peter M Kyne, and David A Grook 2017. Nicho metrics suggest survivaling and apostal
152	David A Crook. 2017. Niche metrics suggest eurynaine and coastal
133	erasmoorances provide troppic connections among marine and freshwater bismess in mortherm Assertable $M_{\rm c}$ in $E_{\rm c}$ in $D_{\rm c}$ in 565, 191–106
754 755	biomes in northern Australia. Marine Ecology Progress Series 565: 181–196.
133	doi:10.3354/meps11995.
/56	Froese, R, and Daniel Pauly. 2015. FishBase world wide web electronic publication.
151	www.fishbase.org $(10/2015)$.
/58	Gallagner, Austin J, Peter M Kyne, and Neil Hammerschlag. 2012. Ecological risk
/59	assessment and its application to elasmobranch conservation and management.
/60	Journal of fish biology 80: 1/2/–48. doi:10.1111/j.1095-8649.2012.03235.x.
/01	Grubbs, K Dean, John K Carlson, Jason G Romine, Tobey H Curtis, W David
762 762	MicEiroy, Camilia I MicCandless, Charles F Cotton, and John A Musick. 2016.
103	Critical assessment and ramifications of a purported marine trophic cascade.
/64 765	Scientific Reports 6. Nature Publishing Group: 209/0. doi:10.1038/srep209/0.
/65	Heitnaus, Michael R, Jeremy J Vaudo, S Kreicker, Craig A Layman, M Krützen,
/66	Derek A Burkholder, K Gastrich, et al. 2013. Apparent resource partitioning and

767 trophic structure of large-bodied marine predators in a relatively pristine seagrass 768 ecosystem. Marine Ecology Progress Series 481: 225-237. 769 doi:10.3354/meps10235. 770 Heupel, Michelle R, John K Carlson, and Colin A Simpfendorfer. 2007. Shark 771 nursery areas: concepts, definition, characterization and assumptions. Marine 772 Ecology Progress Series. doi:10.3354/meps337287. 773 Hussey, Nigel E, Demian D Chapman, Erin Donnelly, Debra L Abercrombie, and 774 Aaron T Fisk. 2011. Fin-icky samples: an assessment of shark fin as a source 775 material for stable isotope analysis. *Limnology and Oceanography: Methods* 9: 776 524-532. doi:10.4319/lom.2011.9.524. 777 Iverson, Sara J. 2009. Tracing aquatic food webs using fatty acids: from qualitative 778 indicators to quantitative determination lipids in aquatic ecosystems. In Lipids in 779 Aquatic Ecosystems, ed. Martin Kainz, Michael T. Brett, and Michael T. Arts, 780 281-307. New York, NY: Springer New York. doi:10.1007/978-0-387-89366-2. 781 Jackson, Andrew L, Richard Inger, Andrew C Parnell, and Stuart Bearhop. 2011. 782 Comparing isotopic niche widths among and within communities: SIBER -Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80: 595-602. 783 784 doi:10.1111/j.1365-2656.2011.01806.x. 785 Jardine, Timothy D, Nicholas R Bond, Michele A Burford, Mark J Kennard, Douglas 786 P Ward, Peter Bayliss, Peter M Davies, et al. 2015. Does flood rhythm drive 787 ecosystem responses in tropical riverscapes? Ecology 96: 684–692. 788 doi:10.1890/14-0991.1. Jardine, Timothy D, Thomas S Rayner, Neil E Pettit, Dominic Valdez, Douglas P 789 790 Ward, Garry Lindner, Michael M Douglas, and Stuart E Bunn. 2017. Body size 791 drives allochthony in food webs of tropical rivers. Oecologia 183. Springer 792 Berlin Heidelberg: 505-517. doi:10.1007/s00442-016-3786-z. 793 Jepsen, David B, and Kirk O Winemiller. 2002. Structure of tropical river food webs 794 revealed by stable isotope ratios. Oikos 96: 46-55. doi:10.1034/j.1600-795 0706.2002.960105.x. 796 Kelly, JR, and RE Scheibling. 2012. Fatty acids as dietary tracers in benthic food 797 webs. Marine Ecology Progress Series 446. Inter-Research, Nordbunte 23, D-798 21385 Oldendorf Luhe, Germany: 1-22. doi:10.3354/meps09559. 799 Kim, Sora Lee, and Paul L Koch. 2012. Methods to collect, preserve, and prepare 800 elasmobranch tissues for stable isotope analysis. Environmental Biology of 801 Fishes 95: 53-63. doi:10.1007/s10641-011-9860-9. Last, Peter R. 2002. Freshwater and estuarine elasmobranchs of Australia. In 802 803 Elasmobranch biodiversity, conservation and management. Proceedings of the 804 International Seminar and Workshop, ed. Sarah L. Fowler, T. M. Reed, and F. A. 805 Dipper, 185–193. 806 Layman, Craig A, and J E Allgeier. 2012. Characterizing trophic ecology of generalist 807 consumers: a case study of the invasive lionfish in The Bahamas. Marine 808 Ecology Progress Series 448: 131–141. doi:10.3354/meps09511. 809 Layman, Craig A, D Albrey Arrington, Carman G Montaña, and David M Post. 2007. 810 Can stable isotope ratios provide for community-wide measures of trophic 811 structure? Ecology 88: 42-48. doi:10.1890/0012-812 9658(2007)88[42:CSIRPF]2.0.CO;2. 813 Layman, Craig A, and David M Post. 2005. Can stable isotope ratios provide for 814 community -wide measures of trophic structure? Reply. Ecological Society of America 89: 2358-2359. doi:10.1038/news050808-1. 815 Loneragan, N R, Stuart E Bunn, and D M Kellaway. 1997. Are mangrove and 816

817	seagrasses sources of organic carbon for penaeid prawns in a tropical estuary? A
818	multiple isotope study. <i>Marine Biology</i> 130: 289–300.
819	Lucifora, Luis O, Marcelo R de Carvalho, Peter M Kyne, and William T White. 2015.
820	Freshwater sharks and rays. Current Biology 25: R971–R973.
821	doi:10.1016/j.cub.2015.06.051.
822	MacNeil, M Aaron, Gregory B Skomal, and Aaron T Fisk. 2005. Stable isotopes from
823	multiple tissues reveal diet switching in sharks. <i>Marine Ecology Progress Series</i>
824	302: 199–206. doi:10.3354/meps302199.
825	Magnone, Larisa, Martin Bessonart, Juan Gadea, and María Salhi. 2015. Trophic
826	relationships in an estuarine environment: A quantitative fatty acid analysis
827	signature approach. Estuarine, Coastal and Shelf Science 166: 24–33.
828	doi:10.1016/j.ecss.2014.12.033.
829	March, James G., Catherine M. Pringle, Matt J. Townsend, and Amanda I. Wilson.
830	2002. Effects of freshwater shrimp assemblages on benthic communities along
831	an altitudinal gradient of a tropical island stream. Freshwater Biology 47: 377–
832	390. doi:10.1046/j.1365-2427.2002.00808.x.
833	Matich, Philip, and Michael R Heithaus. 2014. Multi-tissue stable isotope analysis
834	and acoustic telemetry reveal seasonal variability in the trophic interactions of
835	juvenile bull sharks in a coastal estuary. The Journal of animal ecology 83: 199-
836	213. doi:10.1111/1365-2656.12106.
837	Matich, Philip, Michael R Heithaus, and Craig A Layman. 2011. Contrasting patterns
838	of individual specialization and trophic coupling in two marine apex predators.
839	The Journal of animal ecology 80: 294–305. doi:10.1111/j.1365-
840	2656.2010.01753.x.
841	Matley, J K, Aaron T Fisk, Andrew J Tobin, Michelle R Heupel, and Colin A
842	Simpfendorfer. 2016. Diet-tissue discrimination factors and turnover of carbon
843	and nitrogen stable isotopes in tissues of an adult predatory coral reef fish,
844	Plectropomus leopardus. Rapid Communications in Mass Spectrometry 30: 29–
845	44. doi:10.1002/rcm.7406.
846	McMeans, Bailey C, Michael T Arts, Christian Lydersen, Kit M Kovacs, Haakon
847	Hop, Stig Falk-Petersen, and Aaron T Fisk. 2013. The role of Greenland sharks
848	(Somniosus microcephalus) in an Arctic ecosystem: assessed via stable isotopes
849	and fatty acids. <i>Marine Biology</i> 160: 1223–1238. doi:10.1007/s00227-013-2174-
850	Ζ.
851	Montoya, José M, Stuart L Pimm, and Ricard V Solé. 2006. Ecological networks and
852	their fragility. <i>Nature</i> 442: 259–264. doi:10.1038/nature04927.
853	Moore, Jonathan W, and Brice X Semmens. 2008. Incorporating uncertainty and prior
854	information into stable isotope mixing models. <i>Ecology letters</i> 11: 470–80.
855	doi:10.1111/j.1461-0248.2008.01163.x.
856	Munroe, Samatha E M, Michelle R Heupel, Aaron T Fisk, John M Logan, and Colin
857	A Simpfendorfer. 2015. Regional movement patterns of a small-bodied shark
858	revealed by stable-isotope analysis. <i>Journal of Fish Biology</i> 86: 1567–1586.
859	doi:10.1111/jfb.12660.
860	Munroe, Samatha E M, Michelle R Heupel, Aaron T Fisk, and Colin A
861	Simplendorfer. 2014. Geographic and temporal variation in the trophic ecology
862	of a small-bodied shark: evidence of resilience to environmental change.
863	Canadian Journal of $72:343-351$.
864	Olin, JIII A, Nigel E Hussey, Mark Fritts, Michelle K Heupel, Colin A Simplendorfer,
803 866	Gregg K Poulakis, and Aaron I Fisk. 2011. Maternal meddling in neonatal
ð00	sharks: implications for interpreting stable isotopes in young animals. <i>Rapid</i>

867	communications in mass spectrometry : RCM 25: 1008–16.
868	doi:10.1002/rcm.4946.
869	Parnell, Andrew C, Richard Inger, Stuart Bearhop, and Andrew L Jackson. 2010.
870	Source partitioning using stable isotopes: Coping with too much variation. <i>PLoS</i>
871	<i>ONE</i> 5: 1–5. doi:10.1371/journal.pone.0009672.
872	Parnell, Andrew C, Donald L Phillips, Stuart Bearhop, Brice X Semmens, Eric J
873	Ward, Jonathan W Moore, Andrew L Jackson, Jonathan Grey, David J Kelly,
874	and Richard Inger. 2013. Bayesian stable isotope mixing models. <i>Environmetrics</i>
875	24: 387–399. doi:10.1002/env.2221.
876	Parrish, Christopher C, Peter D Nichols, Heidi R Pethybridge, and Jock W Young.
877	2015. Direct determination of fatty acids in fish tissues: quantifying top predator
878	trophic connections. Oecologia 177: 85–95. doi:10.1007/s00442-014-3131-3.
879	Peterson, B J, and Brian Fry. 1987. Stable isotopes in ecosystem studies. Annual
880	Review of Ecology and Systematics 18. Annual Reviews 4139 El Camino Way,
881	P.O. Box 10139, Palo Alto, CA 94303-0139, USA: 293-320.
882	doi:10.1146/annurev.es.18.110187.001453.
883	Pethybridge, Heidi R, Ross K Daley, and Peter D Nichols. 2011. Diet of demersal
884	sharks and chimaeras inferred by fatty acid profiles and stomach content
885	analysis. Journal of Experimental Marine Biology and Ecology 409: 290–299.
886	doi:10.1016/j.jembe.2011.09.009.
887	Peverell, Stirling Charles, G R Mcpherson, R N Garrett, and N A Gribble. 2006. New
888	records of the River Shark Glyphis (Carcharhinidae) reported from Cape York
889	Peninsula, northern Australia. Zootaxa 68: 53–68.
890	Post, David M, Craig A Layman, D Albrey Arrington, Gaku Takimoto, John P
891	Quattrochi, and Carman G Montaña. 2007. Getting to the fat of the matter:
892	models, methods and assumptions for dealing with lipids in stable isotope
893	analyses. Oecologia 152: 179–189. doi:10.1007/s00442-006-0630-x.
894	Pusey, Bradley J, Mark J Kennard, Helen K Larson, Quentin Alsop, Duncan Buckle,
895	and Hammer Michael. 2015. Estuarine fishes of the South Alligator River,
896	Kakadu National Park, northern Australia. Marine and Freshwater Research 67:
897	1797–1812. doi:10.1071/mf15221.
898	Roach, Katherine A, Kirk O Winemiller, Craig A Layman, and Steven C Zeug. 2009.
899	Consistent trophic patterns among fishes in lagoon and channel habitats of a
900	tropical floodplain river: Evidence from stable isotopes. Acta Oecologica 35.
901	Elsevier Masson SAS: 513–522. doi:10.1016/j.actao.2009.03.007.
902	Roberts, D W. 2016. Package "labdsv." Ordination and Multivariate.
903	Rohner, Christoph A, Lydie I E Couturier, Anthony J Richardson, Simon J Pierce,
904	Clare E M Prebble, Mark J Gibbons, and Peter D Nichols. 2013. Diet of whale
905	sharks Rhincodon typus inferred from stomach content and signature fatty acid
906	analyses. Marine Ecology Progress Series 493: 219–235.
907	doi:10.3354/meps10500.
908	Roughgarden, Jonathan. 1972. Evolution of Niche Width. The American naturalist
909	106: 683–718.
910	Sasaki, K. 2001. Sciaenidae. Croakers (drums). In FAO species identification guide
911	for fishery purposes. The living marine resources of the Western Central Pacific.
912	Volume 5. Bony fishes part 3 (Menidae to Pomacentridae), ed. K.E. Carpenter
913	and V.H. Niem, 3117–3174. Rome.
914	Simpfendorfer, Colin A. 1998. Diet of the Australian Sharpnose Shark,
915	Rhizoprionodon taylori, from northern Queensland. Marine and freshwater
916	research 49: 757–761.

017	Spalson Examplin E. I. Timothy, I. Mullicon, and Sharry E. Williams, 1094, Easd
917	habits occurrence and population structure of the bull shark. Careharbinus
910 010	laucas in Elorida coastal lagoons. Bullatin of Marine Science 34: 71–80
020	Team P Development Core 2014 P: A Language and Environment for Statistical
920	Computing Vienna Austria
022	Thorburn Deep C Howard S Gill and Devid I Morgan 2014 Dradator and prov
922	interactions of fishes of a tropical Western Australia river revealed by diotery
923	and stable isotope analyses. <i>Journal of Poyal Society of Western Australia</i> 07:
924	
925	Thorburn Dean C and David I. Morgan 2004. The northern river shark Chunkis sp
920	C (Carcharhinidae) discovered in Western Australia. Zootaya 685: 1. 8
028	Thorburn Dean C and Andrew I Rowland 2008 Juvenile bull sharks Carcharbinus
020	laucas (Valenciennes, 1830) in northern Australian rivers. The Beggle: Records
930	of The Museums And Art Galleries of The Northern Territory 24: 79-86
931	Tillett Bree I Mark G Meekan and Ian C Field 2014 Dietary overlan and
932	nartitioning among three sympatric carcharbinid sharks. <i>Endangered Species</i>
933	Research 25: 283_293 doi:10.3354/est00615
934	Tilley Alexander Juliana López-Angarita and John R Turner 2013 Diet
935	reconstruction and resource partitioning of a Caribbean marine mesonredator
936	using stable isotone Bayesian modelling <i>PloS one</i> 8: e79560
937	doi:10.1371/iournal.pone.0079560
938	Turchini G M D S Francis S P S D Senadheera T Thanuthong and S S De Silva
939	2011 Fish oil replacement with different vegetable oils in Murray cod. Evidence
940	of an "omega-3 sparing effect" by other dietary fatty acids. Aquaculture 315
941	250–259 doi:10.1016/j.aguaculture.2011.02.016
942	Vaudo, Jeremy J. and Michael R Heithaus, 2011, Dietary niche overlap in a nearshore
943	elasmobranch mesopredator community. <i>Marine Ecology Progress Series</i> 425:
944	247–260. doi:10.3354/meps08988.
945	Ward, Douglas P. Neil E Pettit, M.F. Adame, Michael M Douglas, S. A. Setterfield,
946	and Stuart E Bunn. 2016. Seasonal spatial dynamics of floodplain macrophyte
947	and periphyton abundance in the Alligator Rivers region (Kakadu) of northern
948	Australia. <i>Ecohydrology</i> , December. doi:10.1002/eco.1757.
949	Warfe, Danielle M, Neil E Pettit, Peter M Davies, Bradley J Pusey, S K Hamilton,
950	Mark J Kennard, Simon A Townsend, et al. 2011. The "wet-dry" in the wet-dry
951	tropics drives river ecosystem structure and processes in northern Australia.
952	Freshwater Biology 56: 2169–2195. doi:10.1111/j.1365-2427.2011.02660.x.
953	Winemiller, Kirk O, and David B Jepsen. 1998. Effects of seasonality and fish
954	movement on tropical river food webs. Journal of fish biology 53: 267–296.
955	Young, Jock W, Brian P V Hunt, Timothée R Cook, Joel K Llopiz, Elliott L Hazen,
956	Heidi R Pethybridge, Daniela Ceccarelli, et al. 2015. The trophodynamics of
957	marine top predators: Current knowledge, recent advances and challenges. Deep
958	Sea Research Part II: Topical Studies in Oceanography 113: 170–187.
959	doi:10.1016/j.dsr2.2014.05.015.
960	Zaccarelli, Nicola, Daniel I Bolnick, and Giorgio Mancinelli. 2013. RInSp: an R
961	package for the analysis of individual specialization in resource use. Methods in
962	Ecology and Evolution 4: 1018–1023.
963	
964	

967

968

970 **Tables and Figures**

971 **Table 1.** Number (*n*) and total length of 4 sharks (Every et al., 2017) and 6 putative

972 prey species caught from the South Alligator River, Kakadu National Park, Australia

- 973 from which muscle tissue samples were taken for stable isotope (SIA) and fatty acid
- analysis (FAA). Wet and dry species number, Total length (TL) (± standard deviation
- 975 (SD)), sex ratio and habitat are also included.

Shark Species		Sex ratio	TL±SD	FA	AA	S	Habitat	
		M:F	(cm)					
Scientific Name	Common Name			Wet	Dry	Wet	Dry	
Carcharhinus leucas	bull shark	24:16	82.2±16.3	20	2	27	6	euryhaline
Glyphis garricki	northern river shark	22:19	94.5±24.6	12	13	22	20	euryhaline
Glyphis glyphis	speartooth shark	3:7	88.7±23.3	2	3	2	3	euryhaline
Rhizoprionodon	Australian sharpnose	7:21	54.8±12.1	1	24	4	27	coastal
taylori	shark							
Poten	tial Prey							
Johnius novaeguineae	paperhead croaker		7.9±3.5	8	14	11	8	estuarine
Lates calcarifer	barramundi		39.9±13.8	6	17	8	20	estuarine
Macrobrachium	Rough river prawn		7.4±1.6	21	12	22	15	euryhaline
equidens								
Nemapteryx armiger	threadfin catfish		27.9±5.0	10	12	12	16	estuarine
								/euryhaline?

Polydactylus	king threadfin salmon	44.8±18.8	8	7	8	8	euryhaline
macrochir							
Rhinomugil nasutus	popeye mullet	16.6±6.6	7	7	7	11	estuarine

Table 2. Putative prey species caught in the South Alligator River, Kakadu National

- 980 Park, Australia and their estimated diet discrimination factor (DDF) used in the
- 981 mixing model, based on Bunn et al., (2013).

Species	Feeding method	Diet discrimination factor
Macrobrachium equidens	Predatory invertebrate (March et al. 2002) based	1.8±1.7
Johnius novaeguineae	Omnivorous fish (predatory invertebrates/algae) (Sasaki 2001)	4.3±1.5
Lates calcarifer	Predatory fish (Davis 1985)	5.7±1.6
Polydactylus macrochir	Predatory fish (Brewer et al. 1995)	5.7±1.6
Neoarius armiger	Predatory fish (Blaber et al. 1994)	4.3±1.5
Rhinomugil nasutus	Omnivorous fish (algae / herbivores invertebrates) (Froese & Pauly 2015)(Froese and Pauly 2015)	3.9±1.4

989 **Table 3** Laymen's metrics of the South Alligator River mid-trophic taxa and shark

990 species. Numbers of species (n) at each site and season are included, those with n

values < 5 were omitted from these analysis (highlighted grey). TA = Total Area, NR

992 = range of δ^{15} N, CR = range of δ^{15} N, CD= centroid distance, MNND =mean nearest

993 neighbour distance, SDNND = standard deviation of nearest neighbour distance.

994

Site	А	.11]	1	,	2		3		4
Season	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
п										
C. leucas	6	28	6	25	0	3	0	0	0	0
G. garricki	20	22	10	6	8	14	2	2	0	0
G. glyphis	3	0	3	2	0	0	0	0	0	0
R. taylori	0	0	0	0	0	0	0	0	30	8
I. novaeguineae	14	8	9	0	2	2	3	6	0	0
L. calcarifer	20	8	11	8	5	0	4	0	0	0
M. equidens	15	22	3	8	7	0	5	11	0	3
N. armiger	16	12	7	2	3	6	6	4	0	0
P. macrochir	8	8	0	0	1	1	7	0	0	7
R. nasutus	11	7	5	0	6	0	0	7	0	0
ТА	22.0±2.2	33.7±2.7	17.2±3.4	14.2±3.1	8.5±2.9	0.0±0.0	5.2±1.5	2.8±2.1	-	0.0±0.0
NR	5.0±0.4	7.0±0.5	4.7±0.7	3.9±0.4	1.9±0.6	4.3±0.6	3.5±0.7	3.8±0.5	-	2.5±0.6
CR	7.8±0.38	9.6±0.5	7.4±0.5	9.1±0.4	9.7±0.7	4.1±0.6	4.4±0.7	6.9±0.5	-	2.0±0.6
CD	2.7±0.1	3.2±0.1	2.4±0.2	3.5±0.2	3.5±0.2	3.0±0.3	2.3±0.3	2.9±0.2	-	1.6±0.3
MNND	4.6±0.1	2.0±0.2	2.3±0.2	3.3±0.3	3.1±0.3	6.0±0.7	3.1±0.4	3.8±0.3	-	3.2±0.6
SDNND	2.0±0.2	0.8±0.2	1.2±0.3	1.6±0.4	1.5±0.5	0.0±0.0	0.9±0.5	0.7±0.5	-	0.0±0.0

- **Table 4** Mean values for essential fatty acids (EFA> 0.5%), δ^{13} C and δ^{15} N and their
- standard deviation in muscle (SD) tissue from six potential prey species of shark
- 997 collected from the South Alligator River, Kakadu National Park, Australia. Included
- 998 are indicator FAs for each species with a p<0.05.
- 999

1000 + an indicator fatty acid for the species with p values < 0.05 based on Dufrêne and Legendre (1997),

1001	20:3\omega9* identified based of	n comparison with other	C. leucas fatty acid literature;	a standard was not
------	----------------------------------	-------------------------	----------------------------------	--------------------

	Polydactylus	Johnius	Lates	Macrobrachium	Nemapteryx	Rhinomugil
Species	macrochir	novaeguineae	calcarifer	equidens	armiger	nasutus
SI (ppm)						
$\delta^{13}C$	-17.4±1.3	-19.3±1.6	-22.9±2	-21.4±1	-21.2±2.1	-14.6±1.9
$\delta^{15}N$	8.3±1.8	8.2±1.1	8.2±1.7	8.8±1.5	9.3±3.8	6.6±1.1
C/N	2.8±0.3	2.9±0.1	3.1±0.8	2.8±0.0	4.2±1.1	2.9±0.2
EFA (%)						
18:2ω6	2.3±1.1	1.9±0.8	3.9±1.9	9.5±5.0	3.4±2.9	1.0±1.3
18:3 ω 3	0.6±0.3	0.2±0.1	1.2±1.1	1.1±1.2	2.0±2.7+	0.5±0.5
20:2@6	0.3±0.0	0.3±0.1	0.3±0.1	0.4±0.1	0.7±0.2	0.1±0.2
20:3@6	0.2±0.2	0.5±0.6	0.6±0.2	0.2±0.1	0.4±0.2	0.4±0.2
20:3 w 9*	0.1±0.1	0.6±2.2	0.0±0.0	0.2±0.4	0.0±0.0	0.0±0.0
20:4\omega3/20:2	0.3±0.1	0.4±0.2	0.4±0.3	1.6±0.8+	0.4±0.3	0.6±0.3
20:4ω6	10.6±2.3	9.8±2.5	10.6±4.7	10.3±2.8	7.1±3.9	5.7±2.0
20:5ω3	4.9±1.5	4.9±2.1	1.7±2.4	9.0±2.9 +	2.6±2.2	8.7±4.0
22:2a	0.5±0.1	0.6±0.3+	0.3±0.2	0.0±0.0	0.2±0.1	0.2±0.1
22:3	2.1±0.4	1.8±0.9	1.8±1.2	0.6±0.3	2.0±0.9	3.3±3.6
22:4ω6	1.3±0.5	2.1±2.0	2±0.9	0.5±0.4	1.9±0.8	0.7±0.3
22:5w3	0.0±0.0	0.2±0.7	0.6±1.1	0.1±0.2	0.2±0.9	3.1±4.1 +
22:5ω6	1.9±0.6	3.0±1.2+	1.8±1.2	0.6±0.2	1.2±0.6	1.0±0.4
22:6w3	13.6±3.2	16.6±4.5+	5.6±3.1	4.7±1.4	7.1±5.4	10±4.9
EFA< 0.5%	0.0±0.0	0.2±0.1	0.2±0.1	02±0.2	0.1±0.1	0.3±0.1
SAT	4.5±0.3	4.2±0.2	4.8±0.9	4.6±1.0	5.4±1.1	4.6±0.6
MUFA	1.6±0.1	1.5±0.1	2.0±0.4	1.5±0.3	1.8±0.4	1.7±0.6
PUFA	2.3±0.2	2.6±0.2	1.8±0.5	2.3±0.4	1.7±0.6	2.1±0.7
ω3/ω6	0.7±0.2	0.8±0.5	1.8±0.8	0.7±0.2	1.0±0.4	0.6±1.0

1002 available at the time of analyses EFA (essential fatty acids) <0.5 include 18:3\omega6, 18:4\omega3, 18:2a, 18:2b,

1003	18:2c, 21:5ω3, 21:3, 22:2b, SAT – saturated fa	tty acid,	MUFA - monou	nsaturated fatty a	cids, PUFA –
1004	polyunsaturated fatty acid				
1005					
1006					
1007					
1008					
1009					
1010					
1011					
1012					
1013					
1014					
1015					
1016					
1017					
1018					
1019					
1020	Table 5: Comparison of species, season	n (wet a	und dry) and s	site locations (2	1 - 4) of
1021	essential fatty acids from the mid-taxa	species	(Johnius nov	aeguineae, Lai	tes
1022	calcarifer, Macrobrachium equidens, N	lemapte	eryx armiger,	Polydactylus 1	nacrochir
1023	and Rhinomugil nasutus) in the South A	Alligato	r River, Kaka	ıdu, Australia ı	ising
1024	PERMANOVA. DF = degrees of freed	om.			
	Variable D	F	Pseudo-F	P(perm)	Unique

				perms
Species	3	11.6	< 0.01	9932

https://link.springer.com/article/1	POSTPRINT			
Capture location	1	6.2	< 0.01	9952
Species x Season	3	2.3	< 0.01	9925
Species x Capture location**	8	1.6	0.01	9892
Season x Capture location**	2	1.4	0.2	9947
Species x Season x Capture	2	4.4	< 0.01	9944

- location **
- 1025 **Not all species were included in capture location
- 1026
- 1027
- 1028
- 1029
- 1030
- 1031
- 1032
- 1033

- 1035 Carcharhinus leucas, Glyphis garricki, G. glyphis and R. taylori in the South
- 1036 Alligator River, Australia. Results are the percentage mean proportion of the shark
- 1037 consuming from each prey group and the combined results over all prey groups and
- 1038 the difference between seasons ± standard deviation (SD). Group 1 consists of *Lates*
- 1039 calcarifer, Macrobrachium equidens, Johnius novaeguineae, Group 2 Polydactylus
- 1040 *macrochir*, *Neoarius armiger* and Group 3 was only *Rhinomugil nasutus*.
- 1041

```
Prey group:Group 1% \pm SDGroup 2 % \pm SDGroup 3 % \pm SD
```

	T			
	All Sharks	33.5±20.6	21.6±18.4	44.9±22.0
	C. leucas	3.3±6.4	50.6±19.4	46.1±18.4
	G. garricki	67.8±14.3	1.6±4.8	30.6±14.0
	G. glyphis	61.2±19.2	4.9±9.9	33.9±18.5
	R. taylori	13.9±1.39	13.4±16.2	72.7±17.5
	Wet	2.8±3.9	47.4±12.2	49.8±10.9
	Dry	3.5±5.3	44.5±18.2	52.0±16.5
1042				
1043				
1044				
1045				
1046				
1017				
1047				
1048				
1049				
1050				
1051				
1052	Figures			
1053	Fig. 1 Map of the So	uth Alligator River, N	orthern Territory, Aus	stralia showing
1054	capture locations of e	elasmobranch and prey	v taxa. Each site is sep	parated by a yellow
1055	line. Insert shows ma	p of Australia with a b	black cross indicating	where the river is i
1056	relation to northern A	Australia. Map data: G	oogle. TerraMetrics	
1057		r		
1057				
1058	Fig. 2 Biplot of mear	δ^{13} C and δ^{15} N (and s	tandard deviation) for	mid-trophic prey
1059	species (black dots) (Johnius novaeguineae	e, Lates calcarifer, Mo	acrobrachium
1060	equidens, Nemaptery	x armiger, Polydactyl	us macrochir and Rhi	nomugil nasutus),
	https://www.nespma	rine.edu.au/document/	seasonally-dynamic-e	stuarine-

ecosystem-provides-diverse-prey-base-elasmobranchs

Shark species

- 1061 overlayed the wet (coloured circles) and dry (coloured triangles) season isotope
- 1062 values (adjusted for trophic discrimination) in the shark consumers (Carcharhinus
- 1063 leucas, Glyphis garricki, G. glyphis and Rhizoprionodon taylori).
- 1064
- 1065 Fig. 3 Principal coordinate ordination of essential fatty acids (EFA) that were >
- 1066 0.05% in percentage abundance within both prey and shark species (black circles
- 1067 surrounding symbol), with vector overlays indicating the most influential FAs
- 1068 (Pearson's r > 0.1) to explain the ordination structure.
- 1069
- 1070 Fig. 4 Box and whisker plots from MixSIAR of a) Seasonal difference of shark diet.
- b) Sharks and the proportion of the source (Prey) that makes up their diet. Prey
- 1072 grouped based on δ^{13} C and source of C estimated from Loneragan et al. (1997)
- 1073 estuarine = *Rhinomugil nasutus*, mid-river = *Polydactylus macrochir* + *Lates*
- 1074 *calcarifer* + *N. armiger*, freshwater = *Macrobrachium equidens*.
- 1075
- 1076
- 1077

1078 **Fig. 1**

1085 Fig. 2

1086

1087

1088

1097 **Fig. 3**

1104

1106	Supplementary
1107	Online Resource 1, Table 1 Fatty acids (FA) within prey (Johnius novaeguineae,
1108	Lates calcarifer, Macrobrachium equidens, Nemapteryx armiger, Polydactylus
1109	macrochir and Rhinomugil nasutus) and sharks species (Carcharhinus leucas, Glyphis
1110	garricki, G. glyphis and Rhizoprionodon taylori) found in the South Alligator River,
1111	Kakadu, Australia that can be used as indictors for a specific species according to a
1112	Dufrêne- Legendre indicator species analysis (Dufrêne and Legendre 1997). Note:
1113	The analysis was unable to find indicator FAs for <i>P. macrochir</i> and <i>L. calcarifer</i> .
1114	

		Indicator	
Indicator FAs	Species	Value	P - value
20.3ω9	C. leucas	C	0.7 0.00
20.2		С	0.7 0.00
18.2c		C	0.3 0.00
18.1ω9		0	0.2 0.00
18.2b		С	0.2 0.00
20.1ω9		0	0.2 0.02
22.1 ω 11		0	0.4 0.05
15.1	G. garricki	0	0.2 0.01
20.2ω6		C	0.2 0.02
20.3ω6		0	0.2 0.04
22.0		C	0.2 0.06
16.0FALD		0	0.2 0.08

i17.0		0.2	0.60
20.4ω6	G. glyphis	0.2	0.00
18.0FALD		0.2	0.00
22.4ω6		0.2	0.00
24.1ω11		0.2	0.00
18.0	R. taylori	0.2	0.00
18.1ω7		0.2	0.00
24.0	J. novaeguineae	0.3	0.00
22.6ω3		0.2	0.00
22.5ω6		0.2	0.00
20.1ω7		0.3	0.00
24.1ω9		0.2	0.00
22.2a		0.2	0.03
18.2ω6	M. equidens	0.3	0.00
20.4\omega3/20.2		0.3	0.00
20.5ω3		0.3	0.00
17.0		0.2	0.00
17.1		0.2	0.01
20.0		0.2	0.14
14.0	N. armiger	0.5	0.00
16.0		0.2	0.00
20.1\omega11		0.2	0.00
18.3ω3		0.3	0.01
16.1ω7	R. nasutus	0.3	0.00

POSTPRINT

15.0	0.3	0.00
22.5ω3	0.3	0.00
17.1ω6	0.2	0.01
22.3	0.1	0.64

-

- 1138 **Online Resource 2, Table 2** Mean values for fatty acids (FA> 0.5%) and their
- 1139 standard deviation in muscle (SD) tissue from six potential prey species of shark
- 1140 collected from the South Alligator River, Kakadu National Park, Australia. Included
- 1141 are significant indicator FAs for each species (p < 0.05).

S-resident	Polydactylus	Johnius	Lates	Macrobrachium	Nemapteryx	Rhinomugil
Species	macrochir	novaeguineae	calcarifer	equidens	armiger	nasutus
14:0	0.3±0.4	0.0±0.0	0.2±0.2	0.2±0	2.0±2.6	0.8±1.0
15:0	0.5±0.3	0.3±0.1	0.7±0.5	0.5±0.1	0.6±0.3 +	1.3±1.1 +
16:0	20.5±2.6	16.4±2.4	19.6±4.3	20.5±7.3	25.9±7.4 +	22.9±5.7
17:0	1.2±0.1	1.2±0.5	1.5±0.6	1.8±0.7 +	1.5±0.4	0.9±0.5
18:0	12.6±1.2	12.5±1.3	14.1±5.9	12±2.8	12±1.6	9.9±2.1
20:0	0.3±0.0	0.4±0.2	0.4±0.1	1.0±0.3	0.4±0.1	0.3±0.1
22:0	0.5±0.1	0.9±0.2	1±0.8	1.0±0.4	0.4±0.1	0.3±0.1
24:0	0.4±0.0	1.6±0.5+	0.7±0.4	0.3±0.1	0.2±0.1	0.6±0.4
15:1	0.5±0.4	0.3±0.1	0.7±0.7	0.7±0.3	0.4±0.4	0.3±0.2
16:1ω7	3.1±1.7	1.8±0.9	2.8±2.3	2.0±1.2	3.0±1.7	5.8±4.1+
17:1	1.1±0.3	0.9±0.3	1.8±1.5	2.2±0.8 +	0.6±0.6	0.5±0.3
17:1ω6	0.8±0.2	0.7±0.2	1.0±0.4	0.5±0.2	0.6±0.1	1.2±1.0 +
18:1 ω7	3.4±0.5	3.0±1.4	3.2±1.1	2.6±0.8	3.2±0.6	3.4±0.7
18:1ω9	9.7±1.2	8.5±1.9	12.8±4.5	9.8±3.2	11.8±4.2	8.2±4.5
20:1 \omega7	0.2±0.1	0.6±0.7+	0.1±0.0	0.0±0.0	0.2±0.1	0.3±0.2
20:1 ω9	0.5±0.3	0.3±0.1	0.3±0.2	0.1±0.0	0.7±0.3	0.2±0.3
20:1 ω11	0.1±0.1	0.1±0.1	0.3±0.2	0.2±0.1	0.5±0.3+	0.1±0.0
24:1ω9	0.5±0.4	1.4±0.5+	0.5±0.3	0±0.0	0.3±0.2	0.7±0.8
24:1ω11	0.0±0.0	0.1±0.0	0.1±0.1	0±0.0	0.0±0.0	0.1±0.2
< 0.5%	0.0±0.0	0.0±0.0	0.1±0.0	0.1±0.0	0.1±0.0	0.1±0.0
16:0FALD	0.5±0.4	0.5±0.2	0.3±0.3	0.1±0.2	0.4±0.4	0.4±0.4

18:0FAI	LD	0.4±0.1	0.4±0.2	0.4±0.4	0.4±0.6	0.3±0.2	0.4±0.5
i17:0		0.3±0.1	0.3±0.0	0.6±0.2	0.3±0.1	0.5±0.1	0.0±0.0
1142							
1143	+ an inc	licator fatty acid fo	or the species with	p values < 0.05 base	ed on Dufrêne and I	Legendre (1997),	
1144	FA <0.5	includes 14:1, 15:	0, 16:1ω5, 16:1ω7,	, 16:1ω9, 16:1ω13,	16:4+16:3, , 17:1w	8+17:0, 18:1,	
1145	18:1 <i>w</i> 5,	18:1 ω 7, 18:2, 18:3	3\u03c6, 18:4\u03c6, 19:1,	20:1\overline{05}, 21:5\overline{03}, 22	1:3, 22:2b, 22:1ω7,	22:1ω9, , 24:1ω7,	
1146	18:1FAI	LD, i15:0, i16:0 F.	ALD - fatty aldehy	de analyzed as dime	ethyl acetal		
1147							
1148							
1149							
1150							
1151							
1152							
1153							
1154							
1155							
1156							
1157							
1158							
1159							

- 1160 **Online Resource 3, Fig. 1** Principal coordinate ordination of essential fatty acids
- 1161 (EFA)>0.05% in percentage abundance in prey species, with vector overlays of the
- 1162 most influential FAs (Pearson's correlation above 0.1).
- 1163

