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Abstract 32 

With recent advances in sequencing technology, genomic data are changing how important 33 

conservation management decisions are made. Applications such as Close-Kin Mark-34 

Recapture demand large amounts of data to estimate population size and structure, and their 35 

full potential can only be realised through ongoing improvements in genotyping strategies. 36 

Here we introduce DArTcap, a cost-efficient method that combines DArTseq and sequence 37 

capture, and illustrate its use in a high resolution population analysis of Glyphis garricki, a rare, 38 

poorly known and threatened euryhaline shark. Clustering analyses and spatial distribution of 39 

kin pairs from four different regions across northern Australia and one in Papua New Guinea, 40 

representing its entire known range, revealed that each region hosts at least one distinct 41 

population. Further structuring is likely within Van Diemen Gulf, the region that included the 42 

most rivers sampled, suggesting additional population structuring would be found if other 43 

rivers were sampled. Coalescent analyses and spatially explicit modelling suggest that 44 

G. garricki experienced a recent range expansion during the opening of the Gulf of Carpentaria 45 

following the conclusion of the Last Glacial Maximum. The low migration rates between 46 

neighbouring populations of a species that is found only in restricted coastal and riverine 47 

habitats show the importance of managing each population separately, including careful 48 

monitoring of local and remote anthropogenic activities that may affect their environments. 49 

Overall we demonstrated how a carefully chosen SNP panel combined with DArTcap can 50 

provide highly accurate kinship inference and also support population structure and historical 51 

demography analyses, therefore maximising cost-effectiveness. 52 
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Introduction 57 

Genomic data is changing how wildlife conservation decisions are made (Ovenden et al., 58 

2019). It is now used for species identification or population assignment (Bekkevold et al., 59 

2015; Grewe et al., 2015), inferring sex specific connectivity at both evolutionary and 60 

contemporary timescales (Feldheim et al., 2014; Feutry et al., 2017), and for use in kin 61 

relationships to estimate population size (Ackerman et al., 2017; Bravington et al., 2016a; 62 

Hillary et al., 2018). Genomic data can be mined for sex-linked markers (Anderson et al., 63 

2012), while molecular markers can be used for evolutionary studies investigating the past 64 

demography of species (Maisano Delser et al., 2016). Reduced genotyping costs now support 65 

the use of large sample sizes and more accurate effective population size (Ne) estimates 66 

(Waples et al., 2018). 67 

Sequencing a set portion of the genome is increasingly used in genomic studies, since 68 

sequencing the entire genome of many individuals remains cost-prohibitive for most species. 69 

Restriction enzyme-based complexity reduction methods and sequence capture are two of the 70 

most commonly used methods for the study of non-model organisms (Jones & Good, 2016). 71 

Implementation of restriction enzyme-based complexity reduction methods, such as 72 

DArT/DArTseq (Jaccoud et al., 2001; Kilian et al., 2012) and restriction site-associated DNA 73 

(RAD), allow discovery and genotyping single nucleotide polymorphisms (SNPs) in a single 74 

step. These methods are usually much cheaper than whole genome sequencing approaches but 75 

a great deal of the sequencing effort is still lost to non-variable regions of the genome and low 76 

quality or uninformative SNPs. 77 

Sequence capture is more specific to a particular region of interest than enzyme-based 78 

complexity reduction methods, but it suffers from relatively high library preparation costs prior 79 

to capture, and low-multiplexing capacity. Recently, Ali et al. (2016) developed RAD capture 80 

(Rapture), a combination of RAD and sequence capture techniques. This method is a rapid, 81 

flexible and cost effective library preparation from RAD sequencing (RADseq) and includes 82 

the ability to restrict sequencing to genomic regions of interest from sequence capture, greatly 83 

reducing genotyping costs. Rapture was quickly followed by RADcap (Hoffberg et al., 2016), 84 

a variant of Rapture using the 3RAD protocol instead of RAD and which allows the detection 85 

of PCR duplicates and reduces the amount of missing data. In this study, we introduce 86 

DArTcap, a method based on the same principles as Rapture and RADcap but combining the 87 

cost-effective and consistent  DArTseq protocol and sequence capture to produce affordable 88 

and high-throughput genetic profiles, with negligible amounts of missing data. While the 89 
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concept of DArTcap and its methodology was first optimised in 2015 and has been deployed 90 

commercially for several years, especially in agriculture, there are still no peer reviewed reports 91 

on its use. 92 

Multi-purpose low-cost large SNP panels that enable accurate kinship inference, population 93 

structure and demography have been identified as a high priority for biodiversity conservation 94 

and management (Ackerman et al., 2017; Hess et al., 2015). Close-Kin Mark-Recapture 95 

(CKMR) (Bravington et al., 2016b) is a rapidly expanding procedure for robust population size 96 

estimation that has already changed how valuable commercial fish species and rare threatened 97 

species are managed and monitored (Bravington et al., 2016a; Hillary et al., 2018). Importantly 98 

for this paper, CKMR requires very reliable kinship inference because its success relies on 99 

finding a few dozen true kin pairs in large samples (i.e. thousands to millions of comparisons). 100 

In addition to estimates of population size, CKMR can identify population boundaries, which 101 

is fundamental to delineating the spatial scale of units for effective conservation and 102 

management of threatened species (Feutry et al., 2017; Feutry et al., 2014). In contrast to 103 

population genetics, CKMR can provide a direct estimate of connectivity over short timescales 104 

(one or two generations), as opposed to long timescales (hundreds or thousands or generations) 105 

with population genetics. A threatening process or pressure acting on an isolated part of a 106 

species’ range has an increased probability of causing local extinction, because there is no 107 

buffering by immigration. Estuarine-associated fishes have been shown to have a high 108 

incidence of genetic subdivision, and genetic structuring can be especially complex in 109 

euryhaline species (Bilton et al., 2002; Feutry et al., 2017; Feutry et al., 2014; Lavergne et al., 110 

2014; Phillips et al., 2011; Watts & Johnson, 2004) which have the ability to move across the 111 

fresh-brackish-salt water interface. These species, unlike strictly estuarine species, have the 112 

potential to disperse broadly in the marine corridor, but this may also vary between sexes 113 

(Feutry et al., 2017), resulting in sex-specific impacts from multiple stressors across distinctly 114 

different habitats. 115 

Present population boundaries are the result of demographic and selective processes which 116 

have interacted with a species during its evolutionary history. Management needs to operate on 117 

these current boundaries and, in particular, boundaries that affect breeding. Modern population 118 

genetics can be used to identify migration patterns among sampled and unsampled populations 119 

and the change in genetic diversity through recent or more distant generations. It can also be 120 

used to reconstruct crucial properties of conservation genetics, such as species origin and any 121 

shifts or contractions of range through time. Effective conservation policies depend on an 122 
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accurate knowledge of current and historical processes, since genetic diversity alone, or 123 

changes in effective population size (Ne), can be misleading if estimated locally while failing 124 

to account for variation at a larger geographic scale using adequate population genetics 125 

modelling (Maisano Delser et al., 2018). Integrating classical population genetics and CKMR 126 

now provides an accepted approach to clearly identify current and distant properties of a 127 

species’ biogeographic history (Lowe et al., 2017). 128 

Sharks and rays (subclass Elasmobranchii) are a group of global conservation concern, with a 129 

quarter of all species estimated to be at risk of extinction (Dulvy et al., 2014). The small 130 

proportion (~5%) of this group that lives in freshwater or euryhaline environments is often at 131 

an elevated risk of population depletion from overfishing or habitat loss and degradation due 132 

to their restricted distributions, intrinsic biological vulnerability, and the escalating intensity of 133 

pressures on their aquatic habitats, including climate change (Chin et al., 2010; Dulvy et al., 134 

2014; Lucifora et al., 2015). Despite this elevated level of risk, population boundaries remain 135 

undefined for most species, compromising their conservation and management. 136 

The river sharks (Glyphis spp.) are highly threatened euryhaline sharks of the Indo-West 137 

Pacific, characterised by taxonomic uncertainty, poorly-defined distributions, and a lack of 138 

ecological data (Li et al., 2015). One species, the Ganges Shark (Glyphis gangeticus) faces 139 

immense human pressure in Southeast Asia and the Arabian Sea, with only rare contemporary 140 

records (Jabado et al., 2018; Li et al., 2015). In contrast, two species, the Speartooth Shark 141 

(Glyphis glyphis) and the Northern River Shark (Glyphis garricki), occur in relatively 142 

undisturbed environments of northern Australia where low human population size and the 143 

remoteness of the landscape have limited development pressure, and many estuaries are in 144 

near-pristine conditions (Pillans et al., 2010; Woinarski et al., 2007). These two species provide 145 

ideal case studies in understanding how genomic data can support conservation of rare and 146 

threatened aquatic species. 147 

Population boundaries have been identified in G. glyphis across its limited northern Australian 148 

estuarine/riverine range (Feutry et al., 2017; Feutry et al., 2014). Structuring was evident 149 

between the three river systems where the species was known to occur, supporting the 150 

designation of each river drainage as a discrete management unit (Feutry et al., 2014). It may 151 

be hypothesised that its congener, G. garricki, a restricted range euryhaline shark found only 152 

in northern Australia and Papua New Guinea (Pillans et al., 2010; White et al., 2015), would 153 

show similar levels of population structuring. This species’ habitat is primarily large tropical 154 

rivers and estuaries where it occurs in tidal reaches; however, there are also coastal records 155 
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(Pillans et al., 2010), suggesting some level of marine dispersal from estuarine and riverine 156 

environments. Glyphis garricki is listed as Endangered on Australia’s national environmental 157 

legislation and is subject to a multi-species Recovery Plan which emphasizes the need to 158 

understand population connectivity and population size for its effective management (DoE, 159 

2015). Recent surveys across northern Australia have revealed that G. garricki occurs in a 160 

wider number of estuarine and river systems than previously documented (e.g. in Pillans et al., 161 

2010). Juveniles in particular are regularly encountered in northern Australian rivers including 162 

those flowing into Van Diemen Gulf (Kyne, 2014) and the western Northern Territory, and the 163 

Kimberley region of Western Australia (P.M. Kyne et al., unpublished data). This improved 164 

understanding of the occurrence and habitat of G. garricki has allowed adequate samples to be 165 

collected to examine population connectivity. 166 

In this study we demonstrate how a carefully selected DArTcap SNP panel allows for cost-167 

effective CKMR grade kinship inference and other population analyses. We illustrate the 168 

benefits of this approach with a practical example, developing robust population structure and 169 

historical demographic analyses for G. garricki, that provides important information for the 170 

conservation and management of this species. 171 

Material and methods 172 

Sample collection and DNA extraction 173 

A total of 468 G. garricki were collected and genotyped from 11 rivers, large marine 174 

embayments or estuaries (thereafter referred to as sampling locations) in 5 different regions 175 

covering the entire known geographic range (Fig. 1) (Pillans et al., 2010; White et al., 2015; 176 

P.M. Kyne et al. unpublished data) between 2012 and 2016. One sample was identified 177 

genetically as a recapture and two individuals of the sister species G. glyphis were also 178 

genotyped to allow the polarisation of markers in historical demographic analyses, for a total 179 

of 469 unique genotypes. Each shark from Australia was measured, sexed, and sampled for 180 

genetic material before it was released at the site of capture. Total lengths (TL) of all sharks 181 

ranged from 52 to 182 cm; most sharks were juveniles or sub-adults, with 26 males >141 cm 182 

TL assessed as being sexually mature (possessing calcified claspers). Sexual maturity in female 183 

sharks cannot be assessed externally in sharks, but 10 females >142 cm TL were assumed to 184 

be mature based on the established male size-at-maturity (Supplemental Information S1 section 185 

2). 186 
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Sharks were sampled under Northern Territory Fisheries Special Permits S17/3252 and 187 

S17/3364, Kakadu National Park Research Permit RK805, Western Australian Department of 188 

Fisheries Exemption No. 2630, Western Australian Department of Parks and Wildlife Permit 189 

SF010485, and Charles Darwin University Animal Ethics Committee Approval A11041. 190 

Samples from Papua New Guinea (PNG) were obtained through artisanal fisheries (White et 191 

al., 2015). DNA was extracted with the DNeasy Blood and Tissue kits (Qiagen) following 192 

standard protocol. 193 

SNP selection for bait design 194 

In order to minimise ascertainment bias, samples from 93 sharks, with a minimum of eight 195 

individuals from each of the 11 sampling locations, were included in the SNP discovery phase. 196 

Samples were genotyped using DArTseqTM as described by (Feutry et al., 2017; Grewe et al., 197 

2015). DArTseqTM is a combination of complexity reduction methods and next generation 198 

sequencing platforms with each complexity reduction method tailored to the organism under 199 

study. In the absence of a reference genome a de novo approach was used for SNP calling with 200 

DArTsof14. For G. garricki, the first set of restriction enzymes (PstI-SphI) did not yield 201 

enough SNPs and it was therefore necessary to apply a second set ( PstI-NspI) in order to reach 202 

a target of ~2,000 high-quality markers that we had previously estimated necessary to 203 

accurately resolve the second order relationships through simulations (data not shown). The 204 

selection process for the DArTcap SNP panel was as follows: i) SNP counts were normalised 205 

for each individual and SNPs with normalised counts below 6 and above 80 were discarded; 206 

ii) SNPs with more than 5% ambiguous genotypes were also discarded (genotypes were 207 

considered ambiguous if the count proportion of one of the alleles fell between 0 and 0.1); iii) 208 

SNPs with a call rate (i.e. proportion of individuals scored) <0.7 were discarded; iv) SNPs with 209 

minor allele frequency (MAF) <0.01 were discarded; and finally, v) a chi-square test to detect 210 

deviation from Hardy-Weindberg equilibrium (HWE) was performed and SNPs with p-values 211 

<0.05 discarded (the thresholds for these filters were defined after plotting the data, 212 

Supplemental Information S1, section 4.1). From the remaining set of 2,094 SNPs, we selected 213 

2,007 for the DArTcap panel based on their power to best resolve kinship by calculating a 214 

pseudo-likelihood (PLOD) score (Hillary et al., 2018). 215 

In order to assess if the HWE filter would have much impact on the DArTcap panel’s ability 216 

to detect population structure, we calculated pairwise fixation indices by sampling location and 217 

carried out a Discriminant Analysis of Principal Components (DAPC) analysis with K-means 218 

clustering based on the SNPs discarded by that filter with similar parameters to those of 219 
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DArTcap dataset described below. The results were consistent with those obtained from the 220 

SNPs that were retained (Supplemental Information S1, sections 4.2 and 4.3). 221 

DArTcap genotyping 222 

DArTcap involves adding a hybridisation-based enrichment step before the DArTseq libraries 223 

are sequenced. The hybridisation step uses custom synthesised biotinylated RNA MYbaits 224 

(Arbor Bioscience) designed based on the chosen DArTseq markers. The 2,007 DArTSeq 225 

markers short-listed for the DArTcap panel were put through a selection process using a 226 

proprietary algorithm based on assessing sequence length and complexity in order to limit non-227 

specific capture. Markers with known sequences shorter than 40bp were removed, as were 228 

those with low complexity. Sequence complexity was assessed by calculating a score based on 229 

median levels of GC, number of sequence variants at the locus and length of homo-polymers. 230 

This reduced the number to 1709 sequences to use for the enrichment and one bait was 231 

designed based on the sequence of the most common allele. DArTcap hybridisation and 232 

washing used the protocols based on Version 3 of the MYBaits manual 233 

(https://arborbiosci.com/wp-content/uploads/2017/10/MYbaits-manual-v3.pdf). These 234 

DArTcap enriched libraries, one per sample, were sequenced on a HiSeq 2500 (Illumina). The 235 

instrument was setup for 1x77 bp per run and the libraries were spread over 1.8 lanes of Hiseq 236 

flowcells, giving approximately 270 million clusters worth of sequence data for the samples 237 

used in the study. 238 

SNP and individual filtering 239 

The DArTcap baits, as with any other enrichment system, are not 100% specific to the SNP-240 

bearing restriction fragment targeted (i.e new regions of the genome are captured) and some 241 

loci that passed QC with DArTseq may be troublesome when genotyped with DArTcap. 242 

Consequently, we added several filtering steps prior to doing any analysis (Supplemental 243 

Information S2.1). 244 

Filtering for population structure and kinship analyses was as follows. In order to avoid short 245 

distance linkage disequilibrium when multiple SNPs were present on the same 75bp fragment, 246 

we only retained the one with the highest polymorphism information content (PIC), which 247 

measures the probability of identifying which of the two alleles at a single locus is transmitted 248 

from a parent to an offspring (Botstein et al., 1980). SNPs and sharks were sequentially filtered 249 

by increasing the proportion of missing data over 100 iterations to a maximum threshold of 250 

0.85 for both the SNPs and sharks. After removing individuals, monomorphic loci were 251 
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removed. Loci with low reproducibility (<0.98; the proportion of identical genotypes 252 

calculated from technical replicates routinely included by DArT P/L for routine quality control) 253 

and low sequencing coverage (<10), subject to higher genotyping error rates, were removed. 254 

Poorly informative loci with low MAF (<0.01) were also removed. SNPs with high counts 255 

(>300) and high heterozygosity (>0.6) were deleted to account for potential paralogous loci 256 

(error during sequence clustering due to high sequence similarity). Again, the thresholds for 257 

these filters were defined after plotting the data (Supplemental Information S1, section 5). 258 

Finally, the R packages Radiator (Gosselin et al., 2020) and OutFLANK (Whitlock & 259 

Lotterhos, 2015) were used to detect and remove sex-linked and outlier loci respectively. Since 260 

unequal sample sizes could introduce bias in clustering algorithms (Foster et al., 2018), filtering 261 

was applied to the full dataset and a subsampled dataset including only 30 randomly chosen 262 

sharks from Van Diemen Gulf (VDG) was selected so that putative populations would roughly 263 

be of equal size (Supplemental Information S1, section 6). 264 

The SNP and individual filtering for detecting the origin of the range expansion and the 265 

historical demographic analyses were similar to the one used for population structure analyses 266 

except for the following steps. All loci with more than 3 SNPs, which are more likely to be 267 

paralogous, were removed and the reproducibility threshold was set at 0.99. SNPs and 268 

individuals with more than 15% of missing data were also eliminated. Rare variants are 269 

extremely important for demographic inferences, both to detect variation in Ne and to trace the 270 

spread of the species spatially, hence the increased filtering stringency. Finally, when 271 

computing the unfolded site frequency spectrum (SFS) and further downstream analyses we 272 

removed all SNPs with missing data (reproducing a pattern of missing data during the 273 

modelling process would be difficult if not impossible) and SNPs heterozygous in the sister 274 

species G. glyphis for which polarization would have been uncertain (Supplemental 275 

Information S2.1). 276 

Kinship inference 277 

Kinship inference was conducted using a log-likelihood-ratio (LLR) approach developed by 278 

(Bravington et al., 2016b) and applied previously to sharks by (Hillary et al., 2018). This 279 

approach has the advantage of offering statistical error control to minimize false positives while 280 

controlling for false negatives, which is critical when the number of comparisons is large and 281 

the goal is to estimate connectivity and/or abundance. This method, while suitable for large 282 

sample sizes, relies on accurate estimation of allele frequencies. Given the relatively low 283 
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sample size in all populations but the VDG, we restricted our search of kin pairs to the VDG 284 

population. 285 

Population structure analyses 286 

Allelic richness (Ar), observed heterozygosity (Ho) and expected heterozygosity (He) were 287 

calculated for each sampling location using the R package diveRsity v1.9.90, while inbreeding 288 

coefficients (FIS) were calculated with hierfstat v0.04-22. Pairwise fixation indices (Weir & 289 

Cockerham, 1984) were calculated on the full dataset for each sampling location separately 290 

using the R package stAMPP v1.5.1 with 10,000 bootstraps (Pembleton et al., 2013). Next, 291 

model-based and dimensionality-reduction clustering analyses were conducted on the full and 292 

subsampled datasets with ADMIXTURE v1.3 (Alexander & Lange, 2011) software and 293 

Adegenet v2.1.1 (Jombart & Ahmed, 2011). A hierarchical approach was used for the clustering 294 

methods (Vähä et al., 2007). A first round of ADMIXTURE and DAPC analyses was carried 295 

out on the full and subsampled datasets followed by a second round on the groups identified in 296 

the first round that included more than one sampling location and at least 10 samples in each 297 

of these (i.e. Cambridge Gulf (CG) and VDG). ADMIXTURE was used to investigate the 298 

genetic ancestry of each individual. The algorithm was run for K = 1-8 with a 100-fold cross-299 

validation and 20,000 bootstraps. The dimensionality-reduction clustering was performed with 300 

the DAPC; (Jombart et al., 2010)). Initially, individuals were grouped according to the data 301 

itself, using the successive K-means algorithm implemented in the find.clusters() function. The 302 

goodness of fit, determined by the Bayesian information criterion (BIC), was employed to find 303 

the best number of clusters (K). In order to avoid over-fitting, the optimal number of principal 304 

components was selected through cross-validation with a 10% hold-out set and 100 replicates 305 

for all DAPC analyses. 306 

Detecting the origin of the range expansion 307 

Significant positive correlation between genetic and geographic distance is indicative of 308 

isolation by distance (IBD), but can also be the result of an equilibrium stepping stone model. 309 

Range expansions generate IBD, but they also leave characteristic footprints in patterns of 310 

genetic diversity within species. Theoretical predictions can be used to both test for the 311 

occurrence of a range expansion and to estimate its centre of origin. Indeed, shared derived 312 

alleles are expected to be at low frequency near the centre of origin of the expansion but reach 313 

higher frequencies in demes with increasing geographic distance from the origin due to serial 314 

founder effects (Slatkin & Excoffier, 2012). The directionality index, Ψ, is the average 315 
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difference in the shared derived allele frequency between two populations (computed only on 316 

alleles where the ancestral copy is not fixed in either of the two populations), and is expected 317 

to be around 0 in an equilibrium stepping stone model but significantly different from 0 in a 318 

range expansion model (Peter & Slatkin, 2013). We polarized SNPs to detect the ancestral 319 

variant using G. glyphis as the outgroup and further computed the matrix of the pairwise Ψ, 320 

testing for its significance using a permutation approach (i.e., whether Ψ is significantly 321 

different from 0). Finally, the origin of the expansion was identified using the Time Difference 322 

of Arrival (TDOA) algorithm (Gustafsson & Gunnarsson, 2003) as implemented in the 323 

rangeExpansion library (Peter & Slatkin, 2013) in the R environment. 324 

Historical demographic inferences: unstructured models 325 

We first investigated the demographic history of each population by considering them as fully 326 

isolated (unstructured demographic model). We used the software stairwayplot v2.0 (Liu and 327 

Fu, 2015) which investigates the Ne and its changes through time using a composite likelihood 328 

approach to find the values that best reproduce the observed SFS. The stairwayplot was run on 329 

the unfolded SFS with a mutation rate per base per generation of 7*10-8 and a 7 year generation 330 

time (following the genomic estimates obtained for Carcharhinus melanopterus (Maisano 331 

Delser et al., 2016). The rational for these choices is: i) C. melanopterus has a similar size to 332 

G. garricki, which is generally a good predictor of the molecular clock; ii) both species are 333 

structured over restricted areas, iii) Maisano Delser et al. (2016) used exon capture which is 334 

more biased towards slower evolving genes than DArTseq and DArTcap (S. Mona, 335 

Unpublished data). The stairwayplot fits n-1 Ne parameters, with n being the number of 336 

sampled chromosomes. When n is large (and so are the classes of the SFS), it may be difficult 337 

to correctly fit the demography if the number of SNP is relatively low. We subsampled the 338 

VDG population down to 30 individuals to resolve this issue (in this case, having too many Ne 339 

parameters and too few SNPs). To this end, we randomly sampled 30 individuals 10 times and 340 

computed the average stairwayplot and its confidence interval over the 10 runs. Finally, we 341 

analysed a scatter sample sensu Wakeley (1999) by randomly pooling one individual per 342 

population. We repeated the process 100 times and computed an average stairwayplot and its 343 

confidence interval. 344 

Historical demographic inferences: structured models 345 

We developed an Approximate Bayesian Computation (ABC) approach to compare four 346 

structured non-equilibrium demographic models (Fig. 2). The four models were devised to 347 
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answer two specific questions: a) estimating the migration matrix connecting the five 348 

populations as defined by population structure analyses (which corresponded to the five regions 349 

sampled, see the population structure results section) and its changes through time; b) 350 

estimating the time of colonization of the habitat. First, all models are characterized by an 351 

ancestral population (with an effective size Nanc) splitting into the five modern populations at 352 

time Ti. This corresponds to an instantaneous colonization of the habitat from G. garricki. After 353 

the split, all populations exchange migrants (Nm) following a linear stepping stone (LSS_1 and 354 

LSS_2) or an island matrix (FIM_1 and FIM_2). The parameters of the migration matrix are 355 

constant through time after the split (LSS_1 and FIM_1) or they change instantaneously at Tm 356 

(LSS_2 and FIM_2). Every Nm is extracted independently from prior distributions (Table 1), 357 

resulting in 8 or 20 parameters for any linear stepping stone or islands matrix respectively.  358 

We generated 100,000 coalescent simulations for each demographic model with fastsimcoal 359 

v2.5.4 (Excoffier et al., 2013), extracting parameters from prior distributions using an in-house 360 

R script. We used a mutation rate of 7*10-8 per base per generation and a generation time of 7 361 

years as for the stairwayplot analyses. We computed the following summary statistics to 362 

estimate the demographic parameters: within population nucleotide diversity (MPD), the 363 

pairwise unfolded site frequency spectrum (2D-SFS), and the pairwise fixation index (FST). We 364 

reduced the number of classes of the 2D-SFS by using a Partial Least Square (PLS) approach 365 

(Wegmann et al., 2009) and retained the first 15 components, reaching a total of 30 summary 366 

statistics when adding the 5 MPD and the 10 pairwise FST. Parameter estimation was computed 367 

using a local linear regression (Beaumont et al., 2002) on the closest 5,000 simulations to the 368 

vector of observed summary statistics. Similarly, to the unstructured models, we subsampled 369 

30 individuals from VDG to avoid having an unbalanced sample, to reduce the number of 370 

classes when computing the 2D-SFS and to counteract the positive FIS found. 371 

To compute the posterior probability of each model we used the MPD and the pairwise FST 372 

only, since the PLS cannot be applied in the context of model selection. We applied a weighted 373 

multinomial logistic regression (Beaumont, 2008) in which we retained the closest 40,000 or 374 

80,000 simulations to the vector of observed summary statistics. We performed a cross-375 

validation test to check for the validity of our model selection procedure: we randomly 376 

generated 1,000 pseudo-observed data set (pods) from the prior distributions of each model 377 

and then we applied the same model selection procedure used for the real data. 378 

Finally, we performed a Bayesian posterior predictive test (Gelman et al., 2013) to check if the 379 

estimated model is able to reproduce observed data. Briefly, we extracted parameter values 380 
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from the posterior distributions of the model under examination and computed summary 381 

statistics on the simulated dataset (of the same size of the real data). We used global FST as a 382 

predictive statistic, since we did not use it in the estimation process (Bertorelle et al., 2010). 383 

Results 384 

Marker discovery 385 

On average a total of  3,979,746 reads per sample were obtained from the DArTseq sequencing. 386 

A total of 3,530 SNPs, found on 3,423 unique contigs ,were called by the DArTsoft14 pipeline 387 

for the combined PstI-SphI and PstI-NspI complexity reductions. Filters on read depth, 388 

ambiguous genotype calls, call rate, MAF and HWE successively discarded 375, 14, 509, 78, 389 

and 460, respectively, leaving a total of 2,094 high quality SNPs for bait design. 390 

Genotyping and filtering 391 

On average 766,621 reads per sample were obtained from the DArTcap sequencing. After 392 

clustering and SNP calling, we obtained 9,111 SNPs found on 7,853 unique contigs. The bait 393 

efficiency was 80.2% with 1,370 SNPs from the original DArTcap panel recovered. Filtering 394 

was applied separately to the full dataset (467 sharks) and a subsampled dataset (113 sharks; 395 

Supplemental Information S2.1). After applying the filtering steps for population structure 396 

analyses, 1,729 SNPs (of which 1,113 were in the DArTcap panel) for 461 sharks, and 1,731 397 

SNPs (of which 1,115 were in the DArTcap panel) for 111 sharks remained for the full and 398 

subsampled datasets, respectively (Supplemental Information S2.1). All sampling areas 399 

exhibited similar genetic diversity, except for King Sound (KS), and to a lesser extent PNG, 400 

that exhibited lower diversity (Table 2). 401 

After all the filtering steps (Supplemental Information S2.1), the final dataset for detecting the 402 

origin of the range expansion and the historical demographic analyses was composed of 461 403 

G. garricki and one G. glyphis and comprised 1,822 loci harbouring 1,850 SNPs. We note that 404 

G. glyphis was used only to compute the unfolded SFS needed to detect the origin of the 405 

expansion and the demographic reconstruction (structured and unstructured models). 406 

Genetic diversity and fixation index 407 

Close to half of the loci were monomorphic in the KS population and its heterozygosity was 408 

about half of what was observed in the other populations. All samples combined exhibited a 409 

positive FIS, whereas it did not differ significantly from 0 or was slightly negative for each 410 

sampling region taken separately (Table 2). Fixation indexes ranged from 0.001 (between some 411 
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rivers within the VDG) to 0.404 (KS vs PNG). Population differentiation between KS, 412 

Cambridge Gulf (West Cambridge Gulf/Ord River), Daly River, VDG (Adelaide, Wildman, 413 

West Alligator, South Alligator, and East Alligator Rivers, and Sampan Creek) and PNG was 414 

about two orders of magnitude higher than between rivers within these regions. King Sound 415 

hosted the most differentiated population overall, almost twice as differentiated as PNG, the 416 

second highest differentiated population. Within the VDG, the Adelaide River was the most 417 

differentiated, but still one order of magnitude less than between the sampling regions defined 418 

above (Table 3). Consequently, we analysed the subsampled dataset with the Adelaide River 419 

both within and distinct from the VDG population. 420 

Population structure 421 

Both Admixture and DAPC analyses of the full dataset without using a priori information on 422 

sampling location revealed five distinct groups - KS, CG, Daly River, VDG and PNG - 423 

although it was necessary to investigate up to K=8 to find these five groups because of some 424 

apparent heterogeneity within VDG (Supplemental Information S1, sections 5.10 and 5.11). 425 

The subsampled dataset did not suffer the same issue and the five groups are clear at K=5 (Fig. 426 

3). The Admixture analysis showed that some individuals from the Daly River may have 427 

inherited DNA from the adjacent populations (CG and VDG), whereas the DAPC analysis 428 

showed one individual caught in the Daly River seemed to belong to the VDG gene pool (Fig. 429 

3). 430 

The second round of the hierarchical analysis generated more contrasted results. Further 431 

genetic heterogeneity was evident in the VDG, although the differentiation was not quite as 432 

clear as between regions (Supplemental Information S1, sections 7 and 8). No sign of 433 

population differentiation was observed between sampling locations in CG (Supplemental 434 

Information S1, section 9). 435 

Kin finding 436 

The accuracy of the parent-offspring, full-sibling, and half-sibling pair identification was 437 

adequate for CKMR. Indeed, the LLR of the unrelated pairs was well separated from the half-438 

sibling pairs. Both are predicted by theory to be normally distributed and it was therefore easy 439 

to visually define a cut-off that would eliminate all false-positives (i.e. high enough that no 440 

unrelated pairs are expected above the cut-off) while retaining a large number of kin pairs. 441 

There was also a clear gap between half-sibling and full-sibling/parent-offspring pairs (Fig. 4). 442 

Four parent-offspring pairs were identified using the exclusion principle (Thompson, 2000) 443 
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and from their sizes it was easy to determine which one was the parent, in each case a male in 444 

the size range 150–160 cm TL (i.e. at a size > size-at-maturity). For all pairs, each member was 445 

caught in a different river, either East and South Alligator, or Wildman and South Alligator. A 446 

total of 34 full-sibling and 130 half-sibling pairs were also identified. It was calculated that just 447 

under 30% of the true half-sibling pairs did not pass the cut-off. The distribution of full and 448 

half-sibling pairs across the different VDG rivers is shown in Table 4. All full-sibling pairs 449 

except one, with one member in Sampan Creek and the other in the South Alligator River  were 450 

found in the same river. 451 

Importantly, only nine full-sibling pairs and 34 half-sibling pairs were caught within two weeks 452 

and, out of these, 40 had differences in total length over 140mm, which is more that the average 453 

yearly growth rate (Bravington et al., 2019) suggesting the siblings belonged to different 454 

cohorts. Also, no kin pair was present in the dataset with equal sample size (Supplemental 455 

Information S1 section 6). We therefore believe that our sampling wasn’t biased toward the 456 

capture of litter mates and did not impact our population analyses. 457 

Detecting the origin of the range expansion 458 

The serial founder effects that characterize range expansions create a pattern of neutral shared 459 

derived alleles that increase in frequency as one progresses away from the centre of origin. We 460 

calculated the matrix of pairwise Ψ and tested for its significance using a permutation approach. 461 

The equilibrium IBD model was barely rejected (p-value ~0.05), suggesting a range expansion 462 

model is more likely to explain the observed data. The two peripheral populations, namely KS 463 

and PNG, displayed the highest frequency of shared derived alleles and the lower genetic 464 

diversity (Supplemental Information S2.2 and S2.6). The TDOA algorithm identifies the Gulf 465 

of Carpentaria (that is, the area laying spatially between PNG and the VDG) as the most likely 466 

origin of the expansion (Supplemental Information S2.6) consistently with the higher genetic 467 

diversity found in its proximity (Supplemental Information S2.2). The probability of the 468 

emplacement of the origin of the expansion decreases symmetrically east and west of the Gulf 469 

(Supplemental Information S2.6), suggesting that two independent waves of colonization 470 

occurred, one towards southern Papua New Guinea and the other following the northern coast 471 

of Australia. 472 

Historical demographic inferences: unstructured models 473 

The stairwayplot is a non-parametric model that makes no assumptions over the change in Ne 474 

through time, being able to recover complex demography (Liu & Fu, 2015). We ran several 475 
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replicates to explore the historical demography of each population to find the parameters that 476 

better reproduce the observed unfolded SFS. Bearing in mind that this approach considers the 477 

sample under investigation as coming from a panmictic population fully isolated (exchanging 478 

no migrants with any other populations), we found a strong abrupt bottleneck in all five 479 

populations as well as a more gradual decrease of Ne through time in the scatter sample (Fig. 480 

5 and Supplemental Information S2.7). The two peripheral populations (KS and PNG) showed 481 

the signal of the bottleneck slightly more recent than the three others and of lower intensity 482 

(considering the ratio between the Ne at the time to the most recent common ancestor to the 483 

modern Ne). Repeating the analyses without singletons obtained consistent results 484 

(Supplemental Information S2.8). 485 

Historical demographic inferences: structured models 486 

We applied four structured demographic models to investigate the migration patterns between 487 

the five sampled populations and the time of origin of the colonization of the habitat (Fig. 2). 488 

First, we performed an ABC model selection procedure (Supplemental Information S2.3). 489 

Independently of the number of simulations retained to perform the logistic regression, LSS_1 490 

was largely supported with a posterior probability of ~0.80. The two linear stepping stone 491 

models, sum up to a posterior probability of ~0.92, suggesting that an island migration matrix 492 

is highly unlikely. We checked the validity of our model selection procedure by performing a 493 

cross-validation experiment (Supplemental Information S2.4). No pods simulated under LSS_1 494 

or LSS_2 were wrongly attributed to any island models with a probability higher than 0.80. 495 

Conversely, only two pods simulated under either FIM_1 or FIM_2 were attributed to LSS_1 496 

or LSS_2 with the same threshold. This suggests that it is possible to carefully distinguish the 497 

two migration patterns (stepping stone vs island). Moreover, only few datasets (67) simulated 498 

under LSS_2 were wrongly attributed to LSS_1 with a probability equal or higher than 0.80 499 

(Supplemental Information S2.4). Given the results of posterior probability obtained in real 500 

data, this shows that it is highly unlikely that our populations experienced a change in 501 

connectivity through time. We then focused on the demographic parameters estimated under 502 

LSS_1. First, we found that the modes of all Nm parameters range between 0.37 and 2.5, 503 

suggesting low connectivity (Table 1). Moreover, PNG and KS, which are the two most 504 

peripheral populations of the linear stepping stone system, are indeed the less connected with 505 

their respective neighbours, further suggesting their isolation. We note that all distributions are 506 

well peaked and different from the priors, suggesting that the data contains enough information 507 

to correctly estimate these parameters (Supplemental Information S2.9). The time of the 508 
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instantaneous colonization Ti is very recent, with a mode of 2,000 generations (95% credible 509 

interval: 554 – 45,700), showing a well peaked distribution (Table 1 and Supplemental 510 

Information S2.9). Finally, we checked the validity of LSS_1 by means of a posterior predictive 511 

test. The observed value of the global FST falls within the 95% of the posterior predictive 512 

distribution simulated under LSS_1, suggesting that this model cannot be rejected and it is able 513 

to reproduce our data (Supplemental Information S2.10). 514 

Discussion 515 

Population structure 516 

Inferring population structure and reconstructing the historical demography of a species is 517 

essential to better establish conservation priorities and management policies. This study 518 

provides the first insight into the genetic population structure of the threatened shark G. 519 

garricki. From our analyses, it is clear that this species has very limited reproductive dispersal. 520 

All five sample regions host at least one distinct population, with possible substructure within 521 

the VDG. Indeed, the clustering analyses and the distribution of kin pairs, mostly found within 522 

the same river, suggest the gene pool is not even homogeneous at that scale. Such fine-scale 523 

structure is uncommon in sharks and as far as we know, G. glyphis is the only other shark 524 

species presenting similar levels of genetic differentiation over just a few hundred kilometres 525 

of coastline (Feutry et al., 2017; Feutry et al., 2014). These two species make slightly different 526 

use of rivers, G. glyphis adults never being found in them, whereas G. garricki adults are found 527 

in tidal reaches of rivers (unpublished data), which may result in different dispersal capabilities.  528 

Interestingly, 24 out of 130 half-sibling pairs were found in different rivers, whereas all 34 full-529 

sibling pairs but one were found in the same river. This indicates fairly restricted juvenile 530 

movements, with most of the dispersal being undertaken by larger individuals. Also, all parents 531 

involved in a parent-offspring pair were males and the parent was always found in a different 532 

river to the offspring. Although the number of observations is small, this tends to support the 533 

idea that adult males frequently move from one river to another to breed. Alternatively, mating 534 

may occur outside rivers with females always pupping in their natal river and males mating 535 

with females from different rivers. While future analysis of mitochondrial DNA combined with 536 

kin data has the potential to reveal sex-specific structuring at even finer scale within the VDG 537 

(Feutry et al., 2017), our results already demonstrate that reproductive philopatry in both sexes 538 

is strong enough in this species to generate highly differentiated populations over distances as 539 

short as 200 km. 540 
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Historical demography 541 

Both the variation of the Ne and migration rate through time among sampled populations need 542 

to be critically evaluated in order to evaluate potential threats affecting the target species. 543 

Population genetics is a powerful tool to infer these parameters, in particular when NGS data 544 

are available, offering a large number of (mostly) unlinked SNPs. Having large inferential 545 

power comes with a drawback: a wrong model will give a wrong answer with high degree of 546 

confidence, implying that careful attention is warranted when choosing the model that best 547 

explains the data. Here we followed recommendations from Maisano Delser et al. (2018) by 548 

first testing the spatial structure of the data to detect if a range expansion occurred in G. 549 

garricki. 550 

We found lower diversity in the more isolated populations at the western and eastern edge of 551 

their range (KS and PNG, Table 3). The occurrence of a range expansion and the large values 552 

of FST found at such a small geographical scale both suggest that metapopulation models should 553 

be applied to best explain the observed data. Nevertheless, contrasting unstructured models 554 

(i.e., models which assume that the population under examination has never exchanged 555 

migrants with other populations) at a different sampling level is a simple approach to provide 556 

a first inference on the history of the metapopulation (Maisano Delser et al., 2016; Städler et 557 

al., 2009; Wakeley, 1999).  558 

We first computed the stairwayplot, which considers populations unstructured, in our five 559 

populations and the scatter sample. Generally speaking, if population structure is suspected (as 560 

in our case), results obtained from unstructured models cannot be interpreted as simple 561 

variation in Ne through time but as the consequence of the interaction between Ne and m 562 

(Maisano Delser et al., 2018; Rodríguez et al., 2018). Typically, populations belonging to a 563 

metapopulation characterized by low Nm show a signature of decline even if demographically 564 

stable (Chikhi et al., 2010). The stairway plot reconstructed in the five populations and in the 565 

scatter sample showed in all cases a dramatic decline of Ne. We therefore interpreted this 566 

variation in Ne as a consequence of the low Nm of the metapopulation rather than a 567 

demographic bottleneck. This is crucial from a conservation genetics perspective, suggesting 568 

in our case, few exchanges between regions but possibly genetically healthy populations within 569 

(i.e. not at risk of inbreeding depression). 570 

The analysis of the stairwayplot (or any unstructured methods exploring the variation of Ne 571 

through times) conveys important details on the temporal dynamics of Nm but its interpretation 572 

is not straightforward (Rodríguez et al. 2018). To confirm these intuitions and deeply 573 
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investigate the evolutionary history of this species, we further applied structured models to 574 

explicitly infer the parameters of interests (i.e., the Nm between the G. garricki populations 575 

and the expansion time). By testing four complex demographic models devised to study the 576 

migration matrix linking sampled populations (Fig. 2) and to detect temporal changes in Nm, 577 

we showed that: i) the populations are connected through a linear stepping stone given the 578 

higher posterior probability received by LSS when compared against FIM models (>0.90 and 579 

well supported by the cross validation experiment); ii) the connectivity is very low, with the 580 

mode of Nm values never higher then 2.5 (Table 1, Supplemental Information S2.9), consistent 581 

with the results from the stairwayplot; iii) the migration rates have not changed since the time 582 

of the colonization of the habitat (model LSS_1 has the highest posterior probability); iv) the 583 

expansion time is very recent, with a mode of ~14,000 years B.P. (Table 1, Supplemental 584 

Information S2.9). These results are biologically reasonable since this species prefers highly 585 

turbid coastal, estuarine and tidal riverine environments (Pillans et al., 2010), (P.M. Kyne, 586 

(unpublished data) which may restrict individuals to particular habitats, decreasing the 587 

likelihood of long distance migrations.  588 

Importantly, we did not detect a change in the Nm through time and LSS_1 was largely 589 

preferred over LSS_2 (Supplemental Information S2.3). This finding seems robust given the 590 

results of the cross-validation test, where LSS_1 is generally well differentiated from LSS_2 591 

(Supplemental Information S2.4). This is reassuring from a conservation genetics perspective 592 

as it highlights that this species has not declined significantly, consistent with the fact that it 593 

inhabits mostly pristine environments. 594 

When we combined evidence from the estimated expansion time and the present distribution 595 

of both G. garricki and G. glyphis, the evolutionary history of G. garricki appears even more 596 

intriguing. Considering a generation time of 7 years, the estimated expansion time of ~14,000 597 

years B.P. is compatible with the opening of the Gulf of Carpentaria (Yokoyama et al., 2001), 598 

the area where we inferred the origin of the range expansion using the directionality index of 599 

Peter and Slatkin (2013) (Supplemental Information S2.6). The most parsimonious explanation 600 

is that this shark species started expanding during the opening of the Gulf of Carpentaria, 601 

somewhere in between PNG and VDG, tracking patches of suitable habitat becoming 602 

progressively available after the Last Glacial Maximum (Yokoyama et al. 2001). There are no 603 

historical or contemporary records of G. garricki in the Gulf of Carpentaria, meaning that either 604 

we have not found it yet (the region is remote and many rivers are poorly surveyed) or that 605 

environmental conditions became progressively unsuitable during the opening of the sea 606 
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expanse, in agreement with the wave of colonization towards newly established areas. This 607 

suggests that the history of this species is extremely recent, but whether G. garricki was present 608 

elsewhere before the Last Glacial Maximum or speciated soon after from G. glyphis remains 609 

to be discovered. In both cases, these two species represent model species to investigate 610 

speciation in sharks.  611 

The KS population stands out, both in terms of genetic differentiation (about twice as high as 612 

between any other two populations) and heterozygosity (about twice as low as any other 613 

population). Glyphis garricki are rare in KS and the high incidence of skeletal deformities 614 

reported from there was suspected to be due to inbreeding in a small gene pool (Thorburn & 615 

Morgan, 2004). Fast genetic drift leading to higher genetic differentiation and low 616 

heterozygosity (mostly due to the high proportion of monomorphic loci) is also consistent with 617 

the presence of a small population in KS. These observations are supported by our historical 618 

demographic results: KS lies at the western edge of the range expansion starting from the Gulf 619 

of Carpentaria, therefore experiencing more drift than the other populations. Consistently with 620 

theoretical (Peischl et al., 2015) and empirical observations (Willi et al., 2018) on the dynamics 621 

of range expansion, KS has likely accumulated a larger mutational load, which provides an 622 

alternative explanation to inbreeding for the observed morphological anomalies. The inferred 623 

small population size, low heterozygosity, and relatively high genetic differentiation compared 624 

to other Australian populations, indicates that the KS population in particular needs to be 625 

managed without any expectation that any local declines as a result of threatening processes 626 

can be balanced by immigration. It is reasonable to expect this population, with its low 627 

heterozygosity, rarity, and high incidence of skeletal deformities is likely to be more 628 

susceptible to anthropogenic change, including those due to climate, and our results suggest 629 

the need for additional caution in its management. 630 

DArTcap performances and kinship inference 631 

The DArTcap method proved effective in isolating a sufficient number of informative SNPs 632 

for CKMR analysis to estimate population parameters that will influence how this threatened 633 

species, or pressures acting upon it, are managed. On-target efficiency seems somewhat lower 634 

than reported for other approaches combining RAD and sequence capture (Ali et al., 2016; 635 

Hoffberg et al., 2016). Several factors can explain this: (i) in this study over 1,700 SNPs were 636 

targeted as opposed to 500 and 964 for Rapture and RADcap, respectively; (ii) there was no 637 

redundancy in our bait design, we had only one bait per locus (redundancy increases efficiency 638 

but also increases costs); (iii) genetic diversity is extremely low in G. garricki and we had a 639 
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limited choice of loci to choose from and GC content was not always optimal; and, (iv) 640 

G. garricki has a relatively large genome (~5Gb, P. Feutry, unpublished data), which is likely 641 

to increase the competition between the targeted sequences and their paralogs. DArTcap 642 

performance on species with smaller genomes suggests efficiency probably decreases when 643 

genome size increases (unpublished data), due to an increasing risk of capturing sequences with 644 

some similarity with the panel. Despite these difficulties, the combination of on-target and off-645 

target loci obtained with DArTcap resulted in a number of high-quality SNP equivalent to the 646 

number of loci we had baits designed for and at a very reasonable cost (~AU$15 per individual 647 

including bioinformatic support). In other less demanding species, more loci could probably 648 

be included in the panel, for a similar cost. 649 

While there is no direct attempt to select makers from the ‘functional’ part of the genome, in 650 

many organisms (especially plants), the DArTseq method selects genic regions with very high 651 

efficiency. One of the most important selection criteria for DArTcap assay markers is the size 652 

of sequence clusters in which the marker is identified. DArTseq marker identification (through 653 

the DArTsoft14 program) involves clustering sequences with a defined distance threshold and 654 

parsing larger clusters into SNP loci. The smaller the cluster the more likely the marker is 655 

coming from a single copy sequence in the genome. In any DArTcap panel there is a definite 656 

enrichment for low/single copy sequences and therefore is likely to enrich for the functional 657 

fraction of the genome. The selection of markers and design of the capture baits 658 

(oligonucleotides) excludes low complexity repetitive regions of the genome, thereby 659 

effectively eliminating the issue of paralogous sequences affecting allele calling. 660 

Potential problems with estimating diversity is not a feature unique to DArTcap, but of any 661 

technology which selects specific sets of markers, which leads to potential ascertainment bias 662 

(Lachance & Tishkoff, 2013). We were fully aware of such risk and our SNP panel was selected 663 

after genotyping a large population of samples on the DArTseq platform which is free from 664 

ascertainment bias. Analyses conducted on the subset of samples that was used to discover the 665 

SNPs showed ascertainment bias is likely limited in this study (Supplemental Information S1 666 

section 4). 667 

The SNP panel designed for this study was perfectly adequate for CKMR. Given the distinct 668 

LLR distributions of unrelated versus kin pairs, it was possible to retain a large number of kin 669 

pairs without having to worry about false-positives (Fig. 4). The panel can also be used to infer 670 

self-identity (i.e. recaptures) or species identification by adopting a similar approach to the one 671 

taken by Kyne and Feutry (2017). For species without a clear external indicator of sex, like 672 
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claspers in sharks, the SNP panel could be further optimized to include sex-specific markers 673 

such as those identified in this study. 674 

Conclusions 675 

DArTcap is a new, cost-effective, high-throughput option in the growing market of complexity 676 

reduction sequencing methods and this study demonstrates how its efficiency can be 677 

maximised by carefully designing the SNP panel. This enabled cost-efficient and highly 678 

accurate identification of first and second-degree relatives, which is critical for downstream 679 

applications such as CKMR. In addition to kinship analysis, we demonstrated that the SNP 680 

panel could be used to investigate population structure and historical demography in great 681 

detail, providing important information for the management of threatened species at no extra 682 

cost. This is a significant improvement on earlier methods, but does depend on a well-designed 683 

SNP panel. For our case study of G. garricki, five distinct populations were detected across the 684 

known species range, with extremely low inter-population geneflow, and evidence of further 685 

intra-population structuring. Overall, populations are believed to be genetically healthy, but 686 

small, isolated and confined to rivers and coastal embayments where anthropogenic pressures 687 

could result in rapid declines. The KS population may be especially susceptible to 688 

anthropogenic change. While much of the species’ range is currently subject to low human 689 

interference, excepting possibly the future impacts of climate change and localised mortality 690 

due to fishing activities, opportunities for increasing development in northern Australia are 691 

under active consideration (Commonwealth of Australia, 2015). This suggests that future 692 

pressures on these isolated populations will increase. Sampling undertaken for this study, and 693 

others on threatened river sharks, has revealed the occurrence of the species in many locations 694 

not previously documented. Not all rivers containing suitable habitat have been surveyed for 695 

this species, and it is possible that additional sampling would reveal additional populations. 696 

Each population should be considered an independent unit for management purposes given 697 

gene flow is extremely low. 698 
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Tables 
Table 1: Parameters estimated under the linear stepping stone model with 1 migration matrix 

(model LSS_1). Number of migrants per generation between populations (Nm) are expressed 

in reverse, following coalescent norm (i.e. number of immigrants received by the population 

left of the arrow from the one at its right). Ti is in generations. U: uniform distribution. U²: 

combination of two independent prior distributions (for N and m). Population abbreviation: 

King Sound (KS), Cambridge Gulf (CG), Daly River (DR), Van Diemien Gulf (VDG), Papua 

New Guinea (PNG). Ti is in generations (generation time is estimated as 7 years, see main 

text). U: uniform distribution. U²: combination of two independent prior distributions (for N 

and m). 

  

Parameter Prior Median Mode 2.5% CI 97.5% CI 

Nm KS → CG U² : 0-50 0.446 0.372 0.087 1.087 

Nm CG → KS U² : 0-50 1.167 0.822 0.326 4.177 

Nm CG → DR U² : 0-50 3.650 2.330 1.106 24.089 

Nm DR → CG U² : 0-50 4.126 2.279 0.747 36.034 

Nm DR → VDG U² : 0-50 4.009 2.490 1.083 25.945 

Nm VDG → DR U² : 0-50 3.050 2.103 1.156 13.530 

Nm VDG → PNG U² : 0-50 0.785 0.565 0.285 4.999 

Nm PNG → VDG U²: 0-50 2.423 1.528 0.578 25.866 

Nanc U: 100-50000 35363 36359 25790 38673 

Ti U: 100-50000 4151 2002 554 45713 
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Table 2: Genetic diversity indices for the global dataset (all regions), and for each of the five 

populations, comprising 461 G. garricki and 1,734 SNPs. Number of monomorphic loci 

(Mo), Allelic richness (Ar), observed heterozygosity (Ho), unbiased expected heterozygosity 

(uHe), and inbreeding coefficient (FIS [95 % confidence intervals]). 

Diversity 

Indices 

All Regions 

 

N=461 

King Sound 

 

N=19 

Cambridge 

Gulf 

N=30 

Daly River 

 

N=29 

Van Diemen 

Gulf 

N=379 

Papua New 

Guinea 

N=4 

Mo 0 814 175 139 149 595 

Ar 1.591 1.378 1.663 1.658 1.693 1.565 

Ho  0.264 0.171 0.285 0.281 0.292 0.289 

uHe 0.261 0.165 0.287 0.283 0.293 0.280 

FIS  0.057 

[0.051,0.060] 

-0.026 

[-0.052,-0.014] 

0.006 

[-0.005,0.017] 

0.005 

[-0.004,0.020] 

0.005 

[-0.001,0.007] 

-0.058 

[-0.069,-0.006] 
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Table 3: Pairwise FST values between all sampled locations for 461 G. garricki, with a bootstrap of 10,000. 

***: p<0.0001, **: p<0.01*: p<0.05 
 

King 

Sound 

N= 19 

West 

Cambridge 

Gulf 

N= 15 

Ord 

River 

N= 15 

Daly 

River 

N= 29 

Adelaide 

River 

N= 32 

Sampan 

Creek 

N= 30 

Wildman 

River 

N= 47 

West 

Alligator 

River 

N= 41 

South 

Alligator 

River 

N= 159 

East Alligator 

River 

N= 70 

Papua New 

Guinea 

N=4 

West Cambridge Gulf 0.312***           

Ord River 0.317*** 0.008***          

Daly River 0.302*** 0.093*** 0.096***         

Adelaide River 0.293*** 0.121*** 0.128*** 0.090***        

Sampan Creek 0.287*** 0.122*** 0.128*** 0.089*** 0.014***       

Wildman River 0.280*** 0.119*** 0.126*** 0.088*** 0.016*** 0.006***      

West Alligator River 0.283*** 0.121*** 0.126*** 0.089*** 0.015*** 0.004*** 0.007***     

South Alligator River 0.263*** 0.121*** 0.127*** 0.089*** 0.014*** 0.002** 0.007*** 0.004***    

East Alligator River 0.275*** 0.123*** 0.128*** 0.091*** 0.014*** 0.001* 0.006*** 0.004*** 0.001***   

Papua New Guinea 0.404*** 0.155*** 0.153*** 0.179*** 0.172*** 0.169*** 0.171*** 0.173*** 0.170*** 0.171***  
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Table 4: Intra and inter-river number of G. garricki full-sibling pairs (N = 34, upper triangle 

and second number along the diagonal) and half-sibling pairs (N = 130, lower triangle and 

first number along the diagonal) within Van Diemen Gulf.  
 

Adelaide 

River 

N= 32 

Sampan 

Creek 

N= 30 

Wildman 

River 

N= 47 

West 

Alligator 

River 

N= 41 

South 

Alligator 

River 

N= 159 

East 

Alligator 

River 

N= 70 

Adelaide River 8 \ 1 0 0 0 0 0 

Sampan Creek 0 1 \ 1 0 0 1 0 

Wildman 

River 

1 1 28 \ 8 0 0 0 

West Alligator 

River 

1 0 0 8 \ 2 0 0 

South Alligator 

River 

1 0 0 6 54 \ 19 0 

East Alligator 

River 

1 6 0 3 4 7 \ 2 
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Figures 
Figure 1: Sampling map of G. garricki in northern Australia and Papua New Guinea. 

Sampling regions are listed in bold and sampling locations are: (WC), West Cambridge Gulf 

(i.e. Durack and Pentecost Rivers, and the West Arm of Cambridge Gulf); (O) Ord River; 

(A), Adelaide River; (S), Sampan Creek; (W), Wildman River; (WA), West Alligator River; 

(SA), South Alligator River; and, (EA), East Alligator River. 
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Figure 2: Alternative scenarios of G. garricki evolution, tested under an ABC framework on 

the filtered genetic dataset. (a) Linear stepping-stone model with 1 migration matrix (LSS_1) 

and (b) 2 migration matrices (LSS_2), (c) non-equilibrium finite island model with 1 

migration matrix (FIM_1) and (d) 2 migration matrices (FIM_2). Detailed description of each 

model and their associated parameters is presented in the main text. Nanc is the ancestral 

effective population size of the founding deme. Ti is the instantaneous colonization / 

expansion time, when G. garricki colonized the available habitat. Tm is the instantaneous 

time change of the migration matrix (models LSS_2 and FIM_2). Population abbreviations 

are as in Table 1. 
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Figure 3: Glyphis garricki individual clustering for the subsetted dataset. A) ADMIXTURE 

ancestry based on posterior membership probabilities. B) DAPC assignment of the subsetted 

based on posterior membership probabilities. 
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Figure 4: Glyphis garricki pairwise log-likelihood ratios in Van Diemen Gulf. Top: all 

pairwise comparisons, the histogram has been cropped at y = 30 for improved visualisation of 

kin pair frequencies. Magenta line indicates expected mean for unrelated pairs, orange line 

indicates expected mean for half-sibling pairs and dash line indicates false-positive cut-off 

(pairs retained as true kin are on its right side). Orange curve shows the expected distribution 

of the half-sibling pairs. Bottom: comparisons between pairs retained as true kin. Half-sibling 

pairs have LLR values below 0, full sibling or parent-offspring pairs have LLR values above 

0. 
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Figure 5: Estimate of Ne variation in G. garricki through time obtained with the stairwayplot 

method on the unfolded SFS. Maximized composite likelihood for each population and the 

scatter sample is presented, confidence intervals are reported separately for each population 

in Fig. S5 and Fig. S6, analysed with and without singletons respectively. 
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