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Abstract. Data are currently being used, and reused, in ecological research at an unprece-
dented rate. To ensure appropriate reuse however, we need to ask the question: “Are aggregated
databases currently providing the right information to enable effective and unbiased reuse?”
We investigate this question, with a focus on designs that purposefully favor the selection of
sampling locations (upweighting the probability of selection of some locations). These designs
are common and examples are those designs that have uneven inclusion probabilities or are
stratified. We perform a simulation experiment by creating data sets with progressively more
uneven inclusion probabilities and examine the resulting estimates of the average number of
individuals per unit area (density). The effect of ignoring the survey design can be profound,
with biases of up to 250% in density estimates when naive analytical methods are used. This
density estimation bias is not reduced by adding more data. Fortunately, the estimation bias
can be mitigated by using an appropriate estimator or an appropriate model that incorporates
the design information. These are only available however, when essential information about the
survey design is available: the sample location selection process (e.g., inclusion probabilities),
and/or covariates used in their specification. The results suggest that such information must be
stored and served with the data to support meaningful inference and data reuse.

Key words: bias; data; database; findable; accessible; interoperable; reusable data; Horvitz-Thompson
estimator; inclusion probability; model; population density estimate; reuse; survey design.

INTRODUCTION

Ecology and other environmental sciences, like most
scientific disciplines, are currently utilizing an unprece-
dented volume of data (e.g., LaDeau et al. 2017) and are
poised to make use of even more (e.g., Culina et al.
2018). In our opinion, this trend is due to two parts: the
increase in publicly available databases, and the realiza-
tion that incorporating data from many sources
increases the information available for any particular
study (Fletcher et al. 2019). The intended and desirable
outcomes from this trend are that individual ecological
studies are now broadening their ecological scale (e.g.,
global studies: Phillips et al. 2019, Gagné et al. 2020,
McKenzie et al. 2020), or are shedding brighter lights on
smaller scales so that data-poor systems can be quantita-
tively studied (e.g., Kindsvater et al. 2018, Fletcher et al.
2019).

The quality of the inferences from these analyses is
only as good as the data that goes into them (e.g., Dob-
son et al. 2020). For aggregated data, this means the
quality of the contributing data sets and how well they
can relate to each other. This is well recognized, and
endeavors have been undertaken to improve data quality,
with primary focus on two aspects: FAIR (Findable,
Accessible, Interoperable, Reusable; Wilkinson et al.
2016, Stall et al. 2019), and standardization of collection
methods (e.g., Przeslawski et al. 2019). Undoubtedly,
these will increase data reusability. However, are there
any other hitherto overlooked aspects that will impede
the reusability of ecological data?
All ecological data are the result of some sort of sam-

pling process, and this process is based on a survey plan
that describes where and how to collect samples. Many
surveys do not consider these aspects in sufficient detail
before implementation (Legg and Nagy 2006). Recent
modeling efforts with data aggregated from multiple sur-
veys have suggested that survey information, such as the
survey plan and sampling gear, should be taken into
account to help data “speak” to one another (Fletcher
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et al. 2019). Without this information, it is hard to
understand the meaning of the data and further (poten-
tially wrong) assumptions are required for analysis and
interpretation. Indeed, the survey information, or survey
metadata, is sometimes not even available to users as the
data themselves are. The importance of this omission
may be under-appreciated, and it is yet unknown how
much of an effect this has on subsequent analyses.
In this work, we investigate what effect ignoring sur-

vey design information can have on analysis outputs. We
make our inference from a simulation experiment based
on a 2018 survey of deep-water corals, which was for-
mally and purposefully designed to increase information
content by modifying the selection process for sample
locations (Foster et al. 2020). The specific questions we
ask are (1) If these data were contributed to databases
that aggregate multiple surveys, would naive reuse gener-
ate a false picture of the ecology or provide misleading
information for management? and (2) How much, if any,
modification of the sample location selection process
(away from complete randomization) is tolerable before
data reuse needs to incorporate survey design informa-
tion? We discuss what survey design information is
needed to be stored within aggregated databases.

METHODS

Deep-water corals

A population of the deep-water stony coral Solenos-
milia variabilis is located in the Huon Australia Marine
Park, which contains geomorphological features known
as the Tasmanian seamounts, located south of Tasmania,
Australia. The distribution of S. variabilis in this region is
not well understood, except in vague terms; it prefers
outcropping locations within a partially known depth
ranges (Thresher et al. 2011). To rectify this knowledge
gap, a scientific survey was undertaken in late 2018 (Wil-
liams et al. 2018, 2020), which follows a 2010 survey in a
comparable region (Williams et al. 2010). The design for
the 2018 survey is outlined in Foster et al. (2020) and con-
sisted of favoring sample locations where S. variabilis
presence/abundance is thought to be uncertain.
The method used to create the survey was to sample

potential sampling locations with specified uneven inclu-
sion probabilities (e.g., Thompson 2012). For the 2018
seamount survey, these probabilities were expert derived
and up-weight the locations that (1) are within the broad
species bathymetric range and (2) are locally elevated in
relation to neighboring locations, measured by the topo-
graphic position index (TPI; Weiss 2001); see Fig. 1.
Only those locations within 485 and 2,015 m deep were
considered for sampling.
In this work, we utilize the 2018 survey’s uneven inclu-

sion probabilities defined in Foster et al. (2020, Table 2),
which links our simulation to procedures used in prac-
tice. These inclusion probabilities are highly skewed as
the area covered by seamounts is comparatively small

(See Fig. 1). The distribution of inclusion probabilities is
given in Appendix S1: Fig. S2. To simplify computation,
we only use the survey area within the Huon Marine
Park, which also contains many of the seamounts in the
broader region.
We also utilize data on S. variablilis from a 2010 sur-

vey described in Williams et al. (2010). The survey
design for the 2010 survey was less formal but did target
the coral’s depth range and sites with higher TPI. For
modeling purposes, we assume that the 2010 design is ig-
norable once the depth and TPI are included as covari-
ates (Gelman et al. 2013). These data were generated
from a camera towed along the seafloor, and later quan-
tified by counting the number of live S. variabilis coral
heads within regularly spaced images. The size of the
seafloor covered by the quantification area, within each
image is also recorded. Overall, in the Huon park there
are 1,517 images spaced along 19 transects with the
longest transect having 212 images and the shortest 12.
Images from the 2018 survey were not used in this work
as, at the time of writing, the images are not yet quanti-
fied.

A model for coral distribution

To analyze the 2010 image data, we use a geostatistical
model. In particular, we use the “SPDE” approach,
which is implemented using the “INLA” approximation
(Rue et al. 2009, Lindgren and Rue 2015) implemented
for R (R Core Team 2019). This approach to computing
is relatively fast, so that many models can be fitted. We
notate each of the (i = 1. . .1,517) observed S. variabilis
coral abundance data as yi, and model all observations
as a function of geographical position (si), bathymetry,
and TPI. That is

log E yijθ, b sið Þ, t sið Þð Þ½ � ¼ β0þβ1b sið Þþβ2bðsiÞ2þβ3t sið Þ
þu sið Þþ log Aið Þ, ð1Þ

where βj is a regression parameter, b(si) and t(si) are bathy-
metry and TPI covariates, respectively, u(si) is a spatial
random variable, Ai is the area that the ith image sampled,
and all effects are gathered into the parameter vector θ. A
quadratic effect for depth was assumed to reflect the belief
that the S. variabilis depth-niche was covered by the data,
whereas it is thought that there is no upper limit to TPI
preference. We assume that the conditional distribution of
y i|θ,b(si),t(si) is Poisson and that the spatial random vari-
able, u(si), is assumed to follow a Matérn Gaussian pro-
cess with mean zero and smoothness ν = 1. This model
gives the spatial covariance of the random effect as

cov u sið Þ, u si0ð Þ½ � ¼ σ2κ si� s0i
�� ���� ��K1 κ si� s0i

�� ���� ��� �
,

which has standard deviation (σ) and scaling parameter
(κ). The function K1(�) is the modified Bessel function of
the second kind and order 1. The Matérn process has
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effective range of
ffiffiffi
8

p
=κ, which is the empirically derived

spatial distance where correlation is γ ≈ 0.1 (Lindgren
et al. 2011, Lindgren and Rue 2015). We specify a penal-
ized complexity prior (Simpson et al. 2017) where there
is Pr(σ > 5) = 0.1, which penalizes overly flexible spatial
processes. The effective range (γ) of the process has a
prior such that Pr(γ < 50 m) = 0.05 so that the spatial
dependence is unlikely to be very short. Priors for the
regression coefficients are chosen to penalize extreme
values. We define these to be normal distributions with

zero mean and variance equal to 5. Both covariates were
standardized to have mean zero and variance 1 before
analysis.

Simulation experiment

The base form of the simulation experiment is (1) vary
inclusion probabilities to be more and less severe than
the 2018 inclusion probabilities, (2) generate a survey
design from these inclusion probabilities, (3) simulate

FIG. 1. Detail of the sampling locations within the Huon Australian Marine Park, located south of Tasmania, Australia. These
locations are those that are within the depth range of 485 and 2,015 m. Bathymetry is water depth (m), and TPI is topographic posi-
tion index and gives an indication of how elevated each cell is with respect to its neighbors (units of TPI are meters). The inclusion
probabilities are those used to draw the sampling locations for the survey. The predicted values are from the model defined in A
Model for Coral Distribution, fitted to the original survey data whose locations are gray “+” on the bathymetry map. The image-
frame size for prediction (20 m2) is arbitrary. The coordinate reference system used is WGS 84/UTM zone 55S, with units of m east
and north.

September 2021 EFFECTS OF IGNORING SURVEY DESIGN Article e02360; page 3



data at the sampling locations generated (using the
model fitted to the 2010 image data), (4) analyze the sim-
ulated data with naive (ignoring sampling probabilities)
and more sophisticated methods that account for the
survey design, and (5) summarize the simulations’ analy-
ses as a response to variation in the unevenness of inclu-
sion probabilities. This approach will inform if the
survey data can be naively reused in the analysis of
aggregated data.
To vary the inclusion probabilities for the N = 8,840

sites that define the sampling area, we start with the
inclusion probabilities used to design the 2018 survey,
and we arrange these probabilities into an N × 1 vector
p. The N sites are arranged on a 300 × 300 m grid and
match the grid of the covariates (see Fig. 1). This was
chosen to match that used in Foster et al. (2020), who
used this as a compromise between accuracy and com-
putational expense. The inclusion probabilities for the as

pα ¼ max p∗α, 0
� �

=K ,

where

p∗α≜ 1pþαðp�1pÞ½ �,

p¼ 1Tp
� �

N is the mean of p, K = 1 Tpα is a normalizing
constant, and the maximum function is applied element-
wise. If an inclusion probability is zero, then that site will
not be chosen in the sample. The parameter α indexes
the severity of the unevenness in the inclusion probabili-
ties, with α = 0 corresponding to even inclusion proba-
bilities (and completely randomized sampling), α = 1
corresponding to the 2018 survey’s inclusion probabili-
ties and α > 1 giving inclusion probabilities more
extreme. We allow α to vary from 0 to 2 in increments of
0.1. For each α, J = 1,000 surveys were simulated, each
consisting of n = 50,100,200 observations from the N
sites within the sampling area. The locations of the
observations were chosen at random using pα.
For each simulated survey, data were simulated at the

n selected locations using parameters drawn from the
posterior distribution of the model in A Model For Coral
Distribution, fitted to the 2010 data. This ensures that all
modeled aspects of the 2010 data, including variability,
are incorporated into the simulation study. The marginal
posterior distribution of the covariate effects is presented
in Appendix S1: Fig. S3.
Each simulated data set is analysed using design-

based and model-based estimators. The target metric in
each of these analyses is the average number of corals
per 20-m2 image (coral density). Theoretically, it is use-
ful to consider the bias in the average density for both
design-based and model-based analyses: design-based
estimates are intended to be unbiased for the average,
and the average is also the Bayes estimate under quadra-
tic loss for model-based methods. We note that other
summaries could be of interest, like the maximum coral

density, but the average is a very common summary,
almost ubiquitously so. The design-based analyses were
a naive mean (ln∑yi), and the Horvitz-Thompson (HT)
estimator (see Thompson 2012) of the form ∑yinpαi
where the sum is over the n samples. The HT estimator is
only available when the inclusion probabilities for the
samples are known, and it should (theoretically) produce
unbiased estimates, even when inclusion probabilities are
unequal. The naive mean should (theoretically) only be
unbiased when the inclusion probabilities are equal
(Thompson 2012).
The model in A Model for Coral Distribution was used

to analyze each simulated data set along with three sim-
plifications. These models are used to investigate the
effect of only making part of the design information
available to the analysis process. The models are as
follows:

Covariates + Spatial. The full model in A Model for
Coral Distribution.

Spatial. Covariates unavailable or neglected and only
the spatial effects are included.

Covariates. Spatial effects are omitted. The analyst
assumes that the observations are independent
given the covariates.

Bathymetry/TPI. The third simplification is to drop
each of the covariates (bathymetry and TPI) in
turn, with no spatial effect.

For all models, the “true” average density of the jth sim-
ulation, µj, was calculated by taking the mean of the set
of predictions formed at a grid of N locations throughout
the study region. The same set of draws of the parameters
(from the posterior that conditions on the 2010 data, A
Model for Coral Distribution) were used to calculate the
set of µj. For a given value of α, the average density esti-
mate of the kth estimation method was assessed by calcu-
lating a percentage difference between the estimated
average density (μ̂jk) and the quantity it is estimating (µj).
Formally, for the jth simulation replicate and the kth esti-
mation method, the percentage difference is

dp j, kð Þ¼ 100
μ̂jk�μ j

μ j
:

For each value of α and for each estimation method,
there are J estimates of average coral density. We sum-
marize this information using the median and mean
absolute deviation [MAD; Venables and Ripley 2002).
These are relatively robust measures of location and
scale that are not unduly affected by extreme values
(outliers). We take the median of the naive mean esti-
mates, when the inclusion probabilities were even
(α = 0), as the reference value for comparison against all
other estimators and all other values of α. The naive
mean has well known and desirable properties when
sampling is even (α = 0).
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RESULTS

Fitting the model to the 2010 image data, see A Model
for Coral Distribution, suggested that coral density
peaked around 1,350 m deep, and had a much reduced
expectation outside of the range (−1,700 to −1,000 m).
Increasing TPI increased the density of corals (about 12
times increase from flat areas to the extremely elevated).
The spatial dependence was short with E(γ|y) = 333 m
(SD(γ|y) = 72.3 m), and the spatial standard deviation

was E(σ|y) = 2.8 (SD(σ|y) = 0.4). Posterior distributions
for all parameters defined in (1) are presented in
Appendix S1: Fig. S3. Posterior predictions from this
model are presented in Fig. 1 and show the effect of
depth, which is smooth over the survey area, and the rel-
atively patchy effects of TPI and spatial noise.
Results for the simulation experiment, described in

Simulation experiment, are presented in Fig. 2. Overall,
it is clear that ignoring the inclusion probability infor-
mation can induce substantial bias in average coral

FIG. 2. Results of the simulation experiment based on the survey of the Huon Australian Marine Park. Top row is for surveys
with n = 50 sample locations, middle row with n = 100, and bottom row with n = 200. Left panels give, for each method and for
each α, the median of the estimates from each of the J = 1,000 simulated data sets. Right panels show the mean absolute deviation
(MAD) estimate of variation of the same estimates. See Methods for the definition of percent difference and for the choice of refer-
ence. Solid gray line is 0% difference and dashed gray line is the median of the naive mean at α = 0 (an unbiased estimator). Small
values of α give more even inclusion probabilities.
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density estimates. It is evident though, that even those
estimation methods that do incorporate inclusion proba-
bilities can perform badly but in general they work as
intended (Fig. 2).
The naive mean is an increasing function of α, imply-

ing that the mean increases as more favorable environ-
ments are sampled with greater inclusion probabilities.
The naive mean also has very high variation, presumably
due to not taking the appropriate weighting of each
observation. The HT estimator, which does account for
unequal inclusion probabilities, decreased with α and did
so sharply just past α = 1 after agreeing with the refer-
ence well for all sample sizes for α < 1.
The simulation illustrated that model-based analyses

can produce unbiased estimates of the average density
(Fig. 2). The form of the model appears to be important
though. The model with no covariates (just a spatial
term) and the model with only the bathymetry covariate
had undesirable performance, with a trend similar to,
but not as extreme as, the naive mean estimate (Fig. 2).
When the full model (covariates and spatial) and the
TPI-only model were used to analyze the simulated data
sets, the median of the estimates for average density were
comparatively unbiased albeit after having high values
for very small α with n = 50 (Fig. 2). A similar pattern
was observed for the model with both covariates, but
this exhibited a slight positive bias.
The full model (with random spatial effects) consis-

tently exhibits small variation in the distribution of
estimates, except for n = 50 and for small α (Fig. 2,
right column). This result is linked to the extrapola-
tion/leverage issues (see Discussion). The covariates
model and the TPI model also suffer from this behav-
ior, at n = 50 and α = 0, but do not have the low vari-
ability in the distribution of estimates, which is
exhibited by the full model.

SUMMARY AND DISCUSSION

For data to be FAIR it must be reusable (Wilkinson
et al. 2016, Stall et al. 2019). For it to be reusable, the rel-
evant information must be made available about how to
reuse it. Without this information assumptions must be
made, with the naive assumption (equal probability ran-
dom sample) often being wrong.
In this study, we investigated the effect of ignoring

survey-design information using a simulation experiment
based on a 2018 survey design, and 2010 image data, for
a chain of seamounts in southern Australia. We found
that ignoring survey design information can induce a
substantial bias in estimates of average population den-
sity when a naive or an inappropriate analysis method is
used; the median of the simulations’ average density esti-
mates can be up to 250% biased and estimates for indi-
vidual data sets even worse. The potentially large bias
has the potential to make seemingly straightforward
inferences wrong and misleading. We note that the den-
sity bias does not disappear with increased sample sizes

(Fig. 2), so “big-data” are no panacea. Even worse, big-
data may lead to confident, but biased, inferences.
The simulation experiment showed that some analysis

methods performed better than others with uneven
inclusion probabilities. The naive mean estimate for pop-
ulation density was the worst performer and some
model-based estimators also produced consistently poor
results (Fig. 2). The bias was alleviated by incorporating
survey design information into the analysis, either
through inclusion probabilities for the Horvitz-
Thompson (HT) estimator, or through inclusion of the
appropriate covariates in a model-based analysis. The
sudden appearance of bias in the HT estimator at α = 1
is suspected to be caused by the introduction of sites
with inclusion probabilities of zero at α = 1 (see Meth-
ods) and the associated severe right skew in the distribu-
tion of inclusion probabilities (Appendix S1: Fig. S2).
We stress that obtaining bias by ignoring design infor-
mation is not a new result, see Gelman et al. (2013:
Chapter 8), Diggle et al. (2010), and Pati et al. (2011).
However, this is perhaps under-appreciated by those
who deal with ecological data (but see Pennino et al.
2018, Dobson et al. 2020). In fisheries, the problem is
receiving recent attention for commercial catch data
(e.g., Trenkel et al. 2013).
The poor performance of the models with covariates

for smaller sample sizes is likely to be due to insufficient
sampling of covariate space (top panel of Appendix S1:
Fig. S1, α ≲ 0.2). The insufficient sampling of covariates
potentially leads to survey data that must be extrapo-
lated, in covariate space, to predict to all locations (to
calculate the average density). This extrapolation in
covariates may be erratic and of low quality. The poor
sampling of covariates potentially also leads to samples
that have undue leverage, which can distort the model
estimates. The supplementary study in Appendix S1:
Section S1 indicates that small sample sizes underesti-
mate the range of both the bathymetry and TPI covari-
ates. A second reason for poor performance is poor
sampling of the spatial extent and hence poor prediction
of the spatial random effect throughout the entire
region. However, the spatial effect has a relatively small
effective range so it is likely that only the largest sample
sizes will cover the area sufficiently.
Survey designs are often based on covariates. To

account for the influence of the survey design on the
model’s predictions, these covariates should be included
in any model utilizing the survey data (Gelman et al.
2013). If there is no information about how the survey
was designed, then it may be most appropriate to include
the covariates that the analysts assumes to be important
in the design, or to use a preferential sampling model
(Diggle et al. 2010). We stress that not including any
covariates makes the assumption that there were no
design-covariates, corresponding to the naive mean in
our simulation study, which may be a very inappropriate
assumption. We are also aware that this simple advice
may be hard to implement in certain situations; an
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example is when all covariates are not available for all
surveys utilized in a particular reuse. In these situations,
careful and skillful analyses must be undertaken, which
will rest on assumptions that are necessary to describe
both the sampling process and ecological processes (Dig-
gle et al. 2010, Pati et al. 2011, Liu and Vanhatalo 2020).
We note that including a spatial random effect in the
southern seamount simulation is not an effective
replacement for covariates and that all the design covari-
ates need to be included (Fig. 2). Both these results are
likely to be due to the relatively noisy, patchy and spa-
tially non-smooth geographical distribution of TPI.
The southern seamount survey example is quite

extreme in its patchy topography and hence the uneven-
ness of the inclusion probabilities. This is why we chose
this survey design: to investigate how bad things could be
if ignored. However, altering the amount of unevenness
(varying α, Simulation experiment) and coupling to the
more general theoretical results (e.g., Diggle et al. 2010,
Gelman et al. 2013) suggest that our results are generaliz-
able to any survey. Of course, the severity will depend on
the amount of variation in the inclusion probabilities, the
sample size (Fig. 2), and the survey design (through speci-
fication of inclusion probabilities/strata, Fig. 2).
To ensure the ability to reuse data, we suggest that data-

base managers should facilitate the storage and serving of
information about survey design, perhaps even incorpo-
rated into formal data formats. Reusers of data should be
encouraged, perhaps by changing default function set-
tings, to download this information with the data. Data
reusers should also be educated about the importance of
survey design information. To be clear, this information at
minimum should consist of a detailed description of, or
accurate reference to, the survey design procedure. Addi-
tionally, it is highly desirable to also include (1) the inclu-
sion probabilities (the H-T estimator only needs these at
the sampled locations) and (2) the values of the covariates
at each location within the well-defined study region. We
note that the inclusion probabilities could be stored as a
field in the data (architecturally similar to another biologi-
cal measurement), and that the covariates could be part of
ameta-data record (or a link to them).
A corollary to this work is that it is best, and in many

ways practically necessary, to have a formal survey
design if the data are to be reused. While it is possible to
model the data from surveys without formal designs, the
process becomes more complex (see the variety of mod-
els in Diggle et al. 2010 and Gelman et al. 2013: Chapter
8), and is liable to ambiguity through the necessity of
making assumptions that are oftentimes untestable. The
data may end up being unusable, produce ambiguous
results, and their curation and analysis may create a
large, hidden research cost (Dobson et al. 2020). We rec-
ommend that surveys should be formally designed and
importantly: the survey design should be stored along
with the data. This work serves as a cautionary tale for
those who wish to use and reuse data: Do not ignore
how the data were obtained, unless you are confident

that there is no intentional, or unintentional, specifica-
tion of unequal inclusion probabilities in the survey
design. Further, this work demonstrates what is needed
to interpret survey data: information about the survey
design employed to collect the data.
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