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The Evidence Based Decision Making (EBDM) paradigm encourages managers to base
their decisions on the strongest available evidence, but it has been criticized for placing
too much emphasis on the choice of study design method without considering the types
of questions that are being addressed as well as other relevant factors such as how
well a study is implemented. Here we review the objectives of Australia’s Marine Park
network, and identify the types of questions and data analysis that would address these
objectives. Critically, we consider how the design of a monitoring program influences our
ability to adequately answer these questions, using the strength of evidence hierarchy
from the EBDM paradigm to assess the adequacy of different design strategies and
other sources of information. It is important for conservation managers to recognize
that the types of questions monitoring programs are able to answer depends on how
they are designed and how the collected data are analyzed. The socio-political process
that dictates where protected areas are placed typically excludes the strongest types
of evidence, Random Controlled Trials (RCTs), for certain questions. Evidence bases
that are stronger than ones commonly employed to date, however, could be used to
provide a causal inference, including for those questions where RCTs are excluded,
but only if appropriate designs such as cohort or case-control studies are used,
and supported where relevant by appropriate sample frames. Randomized, spatially
balanced sampling, together with careful selection of control sites, and more extensive
use of propensity scores and structured elicitation of expert judgment, are also practical
ways to improve the evidence base for answering the questions that underlie marine
park objectives and motivate long-term monitoring programs.

Keywords: monitoring, marine protected area, design methodology, EBDM, causality

INTRODUCTION

Marine Protected Areas (MPAs) are sometimes located in areas with low resource value
(Edgar et al., 2009; Joppa and Pfaff, 2009), and therefore criticized for having little impact
on conservation outcomes (Pressey et al., 2015). Attempts to quantify the effect of MPAs and
MPA networks, however, are usually hampered by a lack of well-designed monitoring studies
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(Guidetti, 2002; Sciberras et al., 2013). For example, our
understanding of the biodiversity values that the 3.3 million km2

Australian Marine Park (AMP) network protects are only just
emerging as the first baseline surveys are completed (Hill et al.,
2014; Huang et al., 2014; Lawrence et al., 2015; Przeslawski et al.,
2015). Low resource value ecosystems are thought to be over-
represented in the AMP, and it may therefore fail to protect
biodiverse and vulnerable habitats (Barr and Possingham, 2013;
Devillers et al., 2014) but the impact of its exclusion zones on
these values is still largely unknown.

Here we review the AMP network’s objectives, and identify the
types of questions that these objectives seek to answer. As an aid
to the development of a future long-term monitoring program
for the network, we examine how survey design influences
the quality of information that an MPA monitoring program
provides. Our analysis is motivated by the Australian government
activating new management plans for Australia’s 44 marine parks
in 2017, and the shift in emphasis within the relevant government
agencies from drafting these plans to implementing them. The
conclusions and recommendations within this analysis, however,
have broader application and are relevant to monitoring designs
for environmental resources more generally.

Our analysis draws on the basic tenets of the Evidence Based
Decision Making (EBDM) paradigm. We chose this paradigm
because scientists have criticized the lazy conception that underlie
many monitoring programs (Nichols and Williams, 2006), whilst
lamenting the predominance of conservation decisions made on
the basis of experience and “common sense” (Sutherland et al.,
2004), calling instead for an “evidence revolution” analogous to
that which occurred in medicine in the 1970s (Pullin and Knight,
2001; Pullin et al., 2004; Fisher et al., 2013). Practical guidance
on how to implement this revolution is slowly emerging (see
Segan et al., 2011; Pressey et al., 2017; Addison et al., 2018), and
conservation scientists have started to adopt EBDM principles
when designing protected area monitoring programs (Ferraro
and Hanauer, 2014; Ahmadia et al., 2015), but these examples are
still rare (Kemp et al., 2012).

We approach our analysis from two perspectives. In section
“Objectives, Questions and Data Analysis” we briefly review the
AMP network’s objectives and identify three different types of
questions that, if we could answer adequately, would determine
whether or not the objectives were being met. We approach the
problem of defining “adequate” in section “Evidence Hierarchies”
by considering the EBDM paradigm’s notion of an evidence
hierarchy, and the different types of evidence within this
hierarchy. In section “Implementing the EBDM Paradigm” we
define an adequate survey design by examining how these two
perspectives intersect. Our aim here is to identify the design
characteristics of a MPA monitoring program (and associated
data analysis) that make it fit for purpose – i.e., generate data
that are adequate for answering the questions that motivated the
program in the first place. Our analysis focuses on the design
of MPA monitoring programs, and the extent to which this
influences the quality of data generated by the program.

We note that survey design is only one of several inter-
related issues that decision makers must contemplate when
evaluating the effectiveness of their management strategies

and adapting these to observed outcomes. Nonetheless, two
important pre-conditions of any adaptive management regime
are: (i) making management objectives explicit, by identifying
the types of questions these objectives seek answers to; and, (ii)
designing monitoring programs in a way that adequately informs
management, by adequately answering these questions (Williams
et al., 2007). The objective of this paper is to provide practical
guidance on how to meet these pre-conditions.

OBJECTIVES, QUESTIONS AND DATA
ANALYSIS

The management plans for the AMP network seek to:
(i) protect and conserve biodiversity and other natural,
cultural and heritage values within marine parks; and (ii)
provide for ecologically sustainable use and enjoyment
of the natural resources within the network, where this
is consistent with the first objective (see for example1).
One way to operationalize these objectives is to identify
a set of key questions, which if answered adequately, will
inform managers where, when and why they are, or are
not, meeting them.

There are three types of questions that may be used to
operationalize these objectives (Table 1). The first type we label
“Knowledge development.” These questions seek to develop a
better understanding of the values and pressures that are present
within an MPA network. This type of question might, for
example, motivate a baseline survey to establish if a valued species
was present at the sample locations, and if so, how abundant it
was in the park. This type of question can be answered by the
summary statistics of a sample – via a descriptive data analysis –
and by using the sample to estimate the abundance or distribution
of the population from which the sample was drawn via an
inferential data analysis (Leek and Peng, 2015).

The second type labeled “Data mining,” seek to generate
ideas or suggest phenomena that may occur within an MPA by
identifying trends or relationships either within the sample data –
via an exploratory data analysis – or more generally (and more
usefully) for the population from which the sample was drawn –
via an inferential data analysis (Leek and Peng, 2015). These types
of questions are correlative in that the pattern is discovered within
a particular survey, but the reasons for the correlation and the
existence of the correlation outside the current data are both
unknown. An example of this type of question might be: “Is there
a relationship between the average abundance of demersal fish
in the MPA and the amount or type of reef habitat?,” or “Is the
abundance of demersal fish in the reserve increasing with time?”

We label the third type of questions as “Causal.” These
types of question are the most important to management
agencies, particularly those seeking to implement adaptive
management strategies. They focus on what is causing the
relationships or trends observed in a sample or inferred in
a population, and in this context often address questions

1https://parksaustralia.gov.au/marine/pub/plans/temperate-east-management-
plan-2018.pdf
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TABLE 1 | Examples of the types of questions, objectives issue and associated data analysis type, that managers might ask of an individual MPA or of a MPA network.

Question type Data analysis type Example Objective issue

Knowledge development Descriptive What benthic species are in the samples? Natural values

Inferential How many tourists visit the park? Sustainable use

Data mining Exploratory Is there a correlation between a certain type of habitat and the abundance of a
species in my sample?

Natural values

Data mining Inferential Are fishermen complying with zone restrictions? Conservation

Are indigenous values in the park being maintained, enhanced or declining? Sustainable use

Is the abundance of threatened species in the park declining? Conservation

Data mining Predictive Are specific species or groups of species represented across the network? Network design

Causal Causal Do education programs improve compliance with zone restrictions? Sustainable use

Does the exclusion of fishing in no-take zones cause an increase in the diversity
of benthic macro-invertebrates in these zones compared to partial use zones?

Conservation

Are kelp communities within the marine park network declining due to climate
change at a comparable rate to communities outside the network?

Objective issues are drawn from the objectives of the Australian Marine Park (AMP) network. Data analysis types are drawn from Leek and Peng (2015).

about how management actions influence the direction and
magnitude of change of a valued resource. Answering this type
of question requires a causal data analysis (Leek and Peng, 2015)
to evaluate or test the hypothesized causal effects of proposed
management actions.

Guidance on how to clearly specify a causal question is
available from several sources. Collaboration for Environmental
Evidence (2013), for example, recommend that these questions
include four key PICO elements: a target (P)opulation, the
(I)ntervention, the (C)omparator, and a measurable (O)utcome.
To continue the demersal fish theme, an example might be: “Does
a ban on demersal trawls (I) cause the biomass (O) of demersal
reef-fish within the MPA (P) to increase, compared to similar
reefs outside the MPA (C)?”

We also include in this third category questions about
the adequacy of models used by managers to support their
decision making. For example, a manager may wish to know
how accurately a Species Distribution Model (that quantifies
the relationship between habitat variables and demersal fish
abundance) predicts the abundance of demersal fish at sites
within the reserve that have yet to be sampled (Fulton et al., 2015;
Young and Carr, 2015).

EVIDENCE HIERARCHIES

The EBDM paradigm ranks the quality of scientific evidence
using a hierarchy that was originally formulated in the late
1970’s (Canadian Task Force on the Periodic Health Examination,
1979). The hierarchy is based largely on how a study is designed,
but it may also be moderated according to how well a study is
conducted. It has been reformulated within a medical context
(see for example: Hadorn et al., 1996; Davies and Nutley,
1999; Pullin and Knight, 2001; OCEBM Levels of Evidence
Working Group, 2011), and epidemiological context (Wilson
et al., 2015) resulting in various slightly different forms. Despite
being reformulated across these two different domains (medical
and epidemiological), the structure of the hierarchies have
remained broadly equivalent. The one exception surrounds the

strength of evidence provided by non-randomized controlled
trials (Figure 1).

Expert Judgment
Some authors find it confusing to include expert judgment as a
separate evidence category because such expertise is necessarily
incorporated into the interpretation or synthesis of different types
of evidence (Guyatt et al., 2008; Dicks et al., 2014a). Nevertheless,
expert judgment is presented as a separate category in almost all
hierarchies, and in environmental domains it is sometimes the
only source of data. In the absence of any empirical observations,
environmental managers must resort to an individual’s or group’s
judgments, intuition or ideology when formulating policies and
deciding between competing strategies.

In terrestrial settings expert judgment is the most prevalent
source of information used to justify environmental management
actions (Pullin et al., 2004; Sutherland et al., 2004), and in coastal
MPAs it is the most common way to assess the effectiveness of
management actions (Addison et al., 2017). It is also used to
determine MPA boundaries and networks (Van Haastrecht and
Toonen, 2011), although here it is increasingly being supported
by systematic analysis of relevant data sets (Airamé et al., 2003;
Watts et al., 2009).

Expert judgment also plays a central role in purposive
(judgmental) sample designs – where samples sites are chosen by
a manager or researcher for a particular value – and convenience
sample designs – where sample sites are chosen because they
are easy or cheap to access (McDonald, 2012). MPA monitoring
designs are often dictated by ease of accessibility or a researcher’s
desire to target particular sites, and this can cause sample sites
to cluster around particular parts of a reserve (Willis et al.,
2003). This approach limits the analyst’s ability to generalize
the information gained from the sample to a population of
interest – i.e., to move from a descriptive to an inferential
analysis of the data.

Expert judgment is ranked as the weakest type of evidence
because it is subject to various forms of bias, including
confirmation and motivation bias, and heuristics that humans use
to simplify complex situations and thereby enable quick decisions
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FIGURE 1 | Summary of five hierarchies of evidence drawn from the medical, health care and epidemiological literature. Text and enumeration are taken from the
original references. Stevens and Milne (1997) is reproduced from Pullin and Knight (2001). With the exception of non-randomized controlled trials, the structure of
each of the five hierarchies is remarkably equivalent allowing studies to be allocated to one of five broadly equivalent groups, ranked from highest (top) to weakest
(bottom). We have added a color scheme to help emphasize this similarity and also identify one outlier: Stevens and Milne (1997) rank well designed controlled trials
without randomization relatively high, whereas Wilson et al. (2015) rank this type of study design as providing a much weaker type of evidence.
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(Tversky and Kahneman, 1974; Kahneman, 2011). Under certain
circumstances these heuristics are useful, but they can also lead to
predictable, systematic errors, for example, being over-confident
about the effectiveness of a reserve based on a small number
of observed outcomes. Furthermore, experts may be unaware
of these heuristics when providing their opinion (Kruger and
Dunning, 1999). Consequently, the facilitator should follow best
practices for diminishing the influence of cognitive biases as
much as possible when eliciting subjective beliefs from an expert
(O’Hagan et al., 2006). Moreover, it should be remembered
that expert opinion is often required in complex situations
where relevant empirical data are sparse or absent. In an EBDM
framework, the expert opinion should improve over time as the
evidence base develops to fill these gaps in empirical data.

Uncontrolled Time Series and Studies
Management interventions that restrict anthropogenic activity
within an MPA, for example prohibiting all or some types of
commercial fishing activity, represent a “treatment” in statistical
parlance. Other forms of treatment in this context could include
implementing a new educational or pest control program,
changing a compliance regime or rehabilitating a damaged
habitat. Typically a treatment aims to change what is thought to
be a causal factor and thereby improve environmental outcomes
in the reserve. In this context a simple uncontrolled study would
be to observe some metric (e.g., biomass of demersal fish), but
only from within an area where a treatment has been applied
(e.g., where demersal trawling had been banned). Uncontrolled
studies, however, can take other recognized forms, such as an
uncontrolled before-and-after study, an uncontrolled time series
study and an uncontrolled interrupted time series (Figure 2).

Most hierarchies rank uncontrolled time series and studies as
relatively poor sources of evidence (Figure 1) because they do
not compare outcomes in a group exposed to a treatment to the
outcomes in a control group that do not receive the treatment.
Without this type of comparison, it is impossible to declare
the treatment as the causative factor because the outcome may
simply have occurred by chance, or for reasons that are unrelated
to the treatment.

Uncontrolled observations can provide an adequate evidence
base if the questions posed by MPA managers can be answered
by the summary statistics of a sample or by the trends and
relationships observed within the sample – i.e., if the questions
are of the knowledge development or data mining types, and
the data are analyzed with a descriptive or exploratory analysis
(Table 1). The questions raised by MPA managers, however, are
often of the causal type, requiring a causal data analysis – i.e.,
they often wish to know about the effects of management within
a zone, reserve or reserve-network (Vanhatalo et al., 2017). The
data provided by uncontrolled studies are usually inadequate for
this type of analysis.

Inferential and predictive types of analysis are most easily
applied to data from uncontrolled observations if the sample
is representative of the population of interest. The objective of
obtaining a representative sample is usually achieved through
some form of randomized design from a clearly defined sampling
frame. Randomized designs, however, are only evident in

about 12% of ecological field studies, either through neglect,
logistical constraints or because sample locations (preferential
or judgmental sampling) are targeted for specific reasons
(Smith et al., 2017).

If the analyst applies an inferential or predictive data analysis
to non-randomized samples, then they should try to account
(through some form of covariate model) for the bias that occurs if
there is a relationship between how sample sites are selected and
the variable(s) that are measured at those sites (Diggle et al., 2010;
Conn et al., 2017). For example, preferentially sampling sites
with a high biomass of demersal fish, or restricting samples to
particular habitats because of the limitations imposed by available
sampling gears, will create bias that should be accounted for
in the analysis.

Cohort, Case-Control and
Cross-Sectional Studies
Studies that observe the effect of a treatment without playing
any role in how the treatment is assigned to sample units are
known as “observational studies” and come in three recognized
forms: (i) cross-sectional study, (ii) cohort study; and, (iii) case-
control study (Figure 3). A cross-sectional study takes a sample
at one point in time from a well-defined population, for example
rocky reefs in the mesophotic zone (30–90 m depth), and infers a
treatment effect by comparing outcomes between sites with and
without the treatment.

Cohort and case-control studies aim to establish an association
between exposure to a treatment and an outcome, but are
distinguished by the way in which sample units are included
within the study. In a cohort study, two or more study groups
are selected according to exposure to a treatment of interest
and outcomes within the groups are then studied through time
(Grimes and Schulz, 2002; Schulz and Grimes, 2002). In a case-
control study the researcher allocates sample units to one of two
comparison groups according to outcomes – i.e., according to
whether they do (the cases) or do not (the control) exhibit an
outcome of interest (Figure 3).

In the context of an MPA monitoring strategy, a cohort study
might be designed by identifying a random sample of rocky
reefs on the continental shelf, and then grouping them according
to different levels of protection, for example by the types of
demersal fishing gear that are excluded. All reefs within the
cohort are monitored and, after a pre-specified time, biodiversity
outcomes such as the biomass of demersal fish are compared
across the groups.

In a case-control study reefs that exhibit an adverse outcome,
for example demersal fish biomass below a specified level, and
those that do not, would be selected by the researcher, who
would then quantify the amount of treatment each reef had
received. Another analogous case-control example would be
to score sample sites based on the presence or absence of a
particular species, and then estimate a treatment effect on the
occurrence of the species.

The quality of information provided by case-control and
cohort studies depends on how sample units within treatment
and control groups are selected. This is because the treatment

Frontiers in Marine Science | www.frontiersin.org 5 November 2019 | Volume 6 | Article 746

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00746 November 27, 2019 Time: 17:30 # 6

Hayes et al. Evidence Base for Monitoring Programs

FIGURE 2 | Schematic illustration of the evidence hierarchy for randomized controlled trials, non-randomized controlled trials and cross over studies. The die
represents randomization at the level of treatment. The strength of evidence is always stronger with treatment randomization (first column on the left) than without it
(second column on the left). The colors in the columns to the left reflect the evidence hierarchies presented in Figure 1. The strength of evidence is ranked from
highest (1) to lowest (5). The “treatment” in this context could be the designation of a new MPA, a change in zonation status, or the implementation of new education
or compliance regime (Table 1). The figure is adapted from Wilson et al. (2015) who adapted Walshe et al. (2013).
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FIGURE 3 | Schematic illustration of the evidence hierarchy for observational studies and expert judgment. The die represents selection of a representative sample
by, for example, a randomized sampling scheme. The strength of evidence is diminished if the sample is not representative of the target population (second column
on the left). The colors in the columns to the left reflect the evidence hierarchies presented in Figure 1. The strength of evidence is ranked from highest (1) to lowest
(5). This figure is adapted from Wilson et al. (2015).
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effect depends not only on the treatment but also on confounding
and non-confounding variables (Figure 4). For example,
motivational bias often occurs in the socio-political processes that
determines the location and size of a reserve, the types of habitat
within it or amount of fishing effort in the area before the reserve
is declared; all of these factors confound treatment effects (Edgar
et al., 2004; Mora and Sale, 2011; Ferraro and Hanauer, 2014;
Dawid, 2015).

Randomized Controlled Trials and Time
Series
Controlled studies come in several forms, including controlled
before and after study, controlled time series, controlled
interrupted times series and cross-over studies. The best evidence
base is achieved, however, when sample units are randomly
allocated to control and treatment groups (Figure 2). All of
the hierarchies reviewed acknowledge that the results of a
properly planned and implemented Randomized Controlled
Trial (RCT) is the most powerful form of scientific evidence for
an individual study.

The random allocation of sample units to treatments has two
important effects: (i) it will (on average) minimize the probability
of treatment being correlated with the presence/absence or
value of a confounding variable (Hurlbert, 1984; Deaton and
Cartwright, 2018) – i.e., it helps to sever the link marked “a” in
Figure 4, forcing the confounding variables U into the class of
non-confounding variables G (Eberhardt and Thomas, 1991); (ii)
as sample size increases, the probability that the treatment and
control groups have similar properties (covariate values) before
treatment increases (Rosenbaum, 2002).

If the process of assigning sites to control and impact groups
within a Before-After-Control-Impact (BACI) (Stewart-Oaten
et al., 1986), or in the various “beyond-BACI” designs described
by Underwood (1992), could be randomized then these studies
would qualify as a randomized, controlled, interrupted time
series (Figure 2) and would provide the best possible design for
estimating the effects of some types of MPA-relevant treatments,
such as the exclusion of fishing effort. If randomization is not
available, and the representativeness of the sample cannot be
adequately defended, then the evidence-base of the study is
adversely affected and the study may not provide the desired basis
for certain types of data analysis.

The consultative process between industry, government and
other stakeholders that determines the boundaries of marine
reserves, and the different activities permitted in the different
zones2 within those boundaries, almost always excludes the
possibility of randomly allocating treatments and controls. This
is a feature of a recognized trade-off between the internal and
external validity of RCTs, where internal validity refers to the
ability of a study to attribute difference in outcomes to the
treatment, and external validity refers to the generalizability of
the study (Rothwell, 2005; Nutley et al., 2013; Mupepele et al.,
2015). The lack of randomized allocation of treatment precludes
the consideration of the MPA’s zones within an RCT study and

2https://www.iucn.org/theme/marine-and-polar/our-work/marine-protected-
areas

thus limits the generality of such studies to the “real world” of
MPA implementation. Other MPA-relevant treatments, however,
such as the implementation of an education program (Table 1)
are more amenable to randomization.

Davies and Nutley (1999) distinguish reviews or meta-analysis
of two or more trials from individual trials, and the pre-eminence
of systematic reviews have since been emphasized (Mupepele
et al., 2015) and formulated into an overall framework for making
environmental decisions (Dicks et al., 2014b). Guidance on how
to conduct systematic reviews exist for environmental evidence
(Collaboration for Environmental Evidence, 2013), but we are not
aware of any calculus for comparing the strength of a systematic
review of many individually low strength sources of evidence with
an individual study of much higher strength. So, whilst a meta-
analysis or systematic review of many RCT’s is unequivocally
the best source of evidence, so long as all the individual studies
are equally well conducted, the status of systematic reviews of
other sources of evidence is less clear unless there are no other
competing, higher strength, sources.

Non-randomized Controlled Trials and
Time Series
If treatment randomization is not possible, it may nevertheless
still be deliberative, and if treatment and control allocation is
well designed then non-randomized before-after studies and
interrupted time series rank highly in the evidence hierarchy
(Figure 1). Non-randomized BACI designs, for example, offer
several theoretical advantages to assessing the effects of MPA
treatments (Fraschetti et al., 2002; Beliaeff and Pelletier, 2011).
These types of studies are rarely applied to MPAs (Willis et al.,
2003; Kemp et al., 2012) because monitoring typically only occurs
after MPAs are designated, which excludes the possibility of
obtaining the “before” samples. Opportunities to apply this type
of design can occur, however, if there is a delay between MPA
declaration and enforcement (Barrett et al., 2007), or if a MPA
network is enlarged, re-zoned or only partially exposed to a
disturbance (Emslie et al., 2015).

All types of cross-over studies (randomized and non-
randomized, Figure 2), on the other hand, are impractical
because they require a deliberate, experimental re-zoning. We are
unaware of any examples of this type of design in an MPA context.
The response time following a switch in zone status may also be
too long in marine ecosystems for this to be useful.

Non-randomized controlled trials and time series go by
various other names, including “Single- or Multiple-time” designs
(Wiens and Parker, 1995), “After Control Impact (ACI)” or
“post-impact” studies (Glasby, 1997). These types of studies are
more common but also more controversial. Stevens and Milne
(1997) rank these types of studies highly but Wilson et al. (2015)
recommends they should not be used in epidemiological contexts
because in the absence of pre-treatment data there is no way
to test for selection bias; that is test for systematic differences
between control and treatment groups (prior to treatment)
that might influence treatment outcomes. A similar form of
selection bias can also occur if non-representative samples are
used in observational studies and for this reason we consider
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FIGURE 4 | Directed acyclic graph highlighting the effects of confounding variables on the observed effect of declaring a MPA. Single-headed arrows represent
causal links. Stochastic nodes (variables) are represented by filled circles, deterministic nodes by filled squares. The node FT is the deterministic management action
of declaring a no-take MPA. The resulting MPA (node T) is defined by characteristics (such as fishing effort, meta-population effects) that determine the probability of
observed outcomes such as the biomass of demersal fish (node Y). A confounding variable is anything that affects both the probability of treatment (the link marked
“a”) and the outcomes that the treatment is designed to alter (the link marked “b”). The effect of treatment T on outcome Y could be confounded by U if (for example)
the management action is more likely to declare small MPAs, in a region isolated from propagules sources, with relatively poor habitat or in regions that have different
levels of localized fishing effort inside versus outside of the proposed MPA boundaries. Monitoring programs that do not control for these variables could over- or
under-estimate the effect of management. Non-confounding variables (node G), such as long term climatic shifts, are things that influence the treatment outcomes
but do not influence the probability of treatment. They cause conditions inside and outside reserve boundaries to vary independently of the reserve treatment and
thereby tend to reduce the power of statistical tests to detect a reserve effect. Measurement error is typically considered to be a non-confounding variable, but it can
act as a confounding variable if it interacts with the treatment effect. For example, fish in a no-take zone of an MPA may be less disturbed by SCUBA observers and
so more likely to be counted when compared to (spear)fished individuals outside the no-take zone.

designs with these characteristics to be of an equivalent evidential
standard (Figures 2, 3).

IMPLEMENTING THE EBDM PARADIGM

The EBDM paradigm has been criticized for placing too much
emphasis on study design and RCTs, undervaluing the evidence
provided by large-scale observational studies, and ignoring
other factors that moderate the strength of evidence, such as
how well a given design is implemented, consistency across
studies and hypothesis plausibility (Nutley et al., 2013; Mupepele
et al., 2015). This criticism is relevant to marine environmental
sciences because randomization, control and replication can be
harder to achieve than in medical trials or epidemiological field
studies. Focus has subsequently shifted to frameworks that more
closely tie the survey design and data analysis to the types
of questions that are being addressed, whilst also accounting
for how well a study is conducted. Here we follow this focus
and offer some recommendations to help ensure monitoring
strategies are implemented in ways that will generate data that
is adequate for answering the various types of questions that are
relevant to MPA managers. Throughout this section we draw
upon our experiences with monitoring activities in AMPs to

highlight examples of good practice and identify opportunities
for future improvements.

Seek Opportunities for a Best Practise
Design
Randomization might be possible for some types of MPA-relevant
treatments, but not others. Where it is possible any of the RCTs
highlighted in Figure 2 will provide good sources of data if
implemented carefully. If researchers or managers are able to
influence the choice of MPA-relevant treatments, but cannot
randomize them, then non-randomized, controlled, interrupted
time series designs are best practice.

If, as is the case for most of the AMP network, monitoring
begins only after an MPA is declared then randomized controlled,
before-after studies and interrupted time series will not be not
attainable for some types of MPA-relevant treatments, but their
non-randomized, uninterrupted counterparts may still be. These
designs have an equivalent standard to uncontrolled before
after studies and uncontrolled interrupted time series, but they
are of a lower evidential standard than cross-sectional studies,
cohort studies or case-control studies with representative samples
(compare Figures 2, 3). These types of design and data analysis,
however, appear to be rare in marine ecology (but see for example
Hall et al., 2006) and to date have not been used in Australia’s
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marine parks. This review suggests a better evidence base is
available through greater use of these approaches.

One practical impediment to all types of controlled studies,
cross-sectional studies, cohort studies or case-control studies
based on representative samples is well defined sample frames
from which to randomly select representative samples, but
this situation is changing. Australian researchers, for example,
recently collated all the existing Australian continental shelf
mapping data together with documentation of reef spatial data
products (Lucieer et al., 2016). This synthesis has helped to
provide a shelf-reef sampling frame, enabling researchers to
identify random reef sites and thereby provide the basis for a well-
designed controlled, cross-sectional study or case-control study.
Fine-scale multi-beam sonar mapping, for example, successfully
mapped an isolated reef in the Tasman Fracture no-take zone,
that was randomly sampled along with equivalent control sites
outside the no-take zone to quantify the effect of the no-take zone
on the abundance of rock lobster (Monk et al., 2016).

Choose Adequate Design/Analysis
Combinations
A descriptive or exploratory data analysis can be applied to
observations gathered with any type of survey design, assuming
samples are collected with reasonable care (Figure 5). As the
manager’s interest extends to questions about the population
from which the sample was drawn, and the data analysis becomes
inferential, predictive or causal, it is important that the sample
is representative of the population of interest (Figure 2). Study
designs that take random samples from a well defined population
frame will meet this requirement, and thereby provide an
adequate basis for design-based or model-based inference (see
Gregoire, 1998). With model-based inference it is possible to
obtain better (more precise) unbiased estimates of population
parameters with judgmental (purposive) sample designs (Särndal
et al., 1978). This remains, however, a risky proposition as it
presumes a realistic statistical model that may or may not have the
necessary information available (e.g., environmental variables).

We recommend that, wherever possible, the process of
choosing sample sites within control and treatment sites
be randomized. Random sample selection is the accepted
standard for obtaining a representative sample in most scientific
disciplines. Random selection also helps to future-proof the
data, enabling them to be used in later inferential, predictive
or causal data analysis [as defined by Leek and Peng (2015)].
For example, observations within an MPA will still serve as
an adequate (but perhaps not optimal) basis for an inferential
analysis as understanding improves and models change. It
is important to recognize that the benefits of randomization
accrue on average, meaning that any single random sample
may not be representative of the target population, and in
particular may not reflect the many factors that influence a
population. The probability of this outcome, however, diminishes
as the sample size increases, and the likelihood of capturing
influencing factors within the sample can be improved by taking
randomized, spatially balanced, samples (Olsen et al., 2012;
Grafström and Lundström, 2013).

The precision of population-level estimates can also be
improved if samples are spatially balanced, and we therefore
encourage the use of spatially balanced designs, noting that there
are several software packages that will assist in this process (e.g.,
Foster et al., 2019b). Randomization is sometimes criticized as
being inefficient, where for example sites are randomly selected
from inaccessible locations or habitats not utilized by the study
organism(s). It should be noted, however, that randomization
can occur within a sample frame restricted to accessible locations
or relevant habitats, or perhaps more usefully the probability
of including a site may vary by habitat, distance to previously
sampled locations or other covariates (Foster et al., 2017). In
this way, the sets of locations that are likely to contribute more
uncertainty to the population estimates are more likely to be
sampled (e.g., Thompson, 2012). We also note that designs can
be constructed for continuous transects (Foster et al., 2019a) and
for clustered point-in-space observations (Lawrence et al., 2016).

Spatially balanced designs were first employed in the AMP
network during the baseline surveys for the Flinders (Lawrence
et al., 2015) and Geographe Bay (Lawrence et al., 2016)
marine parks. Some researchers were initially skeptical about
the practicality of conducting spatially balanced surveys in these
areas, but this design was a significant factor in the subsequent
discovery of new (sponge gardens) and much more extensive
(seagrass) habitats, respectively. Spatially balanced designs have
since been used in baseline surveys of the Tasman Fracture
AMP (Monk et al., 2016), the Hunter and the Beagle AMPs, a
recent survey of the Ningaloo AMP’s IUCN II and IUCN IV
zones, and in a survey of the seamounts south of Tasmania
(including the Huon and Tasman Fracture AMPs). As a set
the surveys highlight the flexibility of spatially balanced designs
for continuous transects and point-in-space observations over a
range of spatial scales.

Control for Confounding Variables
Descriptive, exploratory, inferential and predictive types of
analysis are relatively easy to conduct compared to a causal
analysis (Figure 5). Typically, however, managers want to test the
hypothesis that their interventions have been effective (Table 1),
and this requires a causal data analysis. This type of analysis raises
additional challenges – samples must not only be representative
of the target population, but in all other practical options, the
analysis must either control for confounding variables through
the survey design, or by analysis, and in the case of uncontrolled
studies model the outcomes (known as the “counter-factual
outcomes”) that would have occurred in the absence of the MPA
treatment (Figure 5).

There are a number of different ways to control for the
potential effects of confounding variables with these types
of observational studies. Within ecological domains, however,
the main approaches are manually matching (also known
as “pairing”), matching or weighting sites using propensity
scores and the use of a statistical model (Stuart, 2010;
Ferraro and Hanauer, 2014).

Using a statistical model to describe the outcomes that would
have occurred in the absence of an MPA treatment is a relatively
common technique. For example, to estimate the effect of MPAs
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FIGURE 5 | Summary of the adequacy of the evidence base, and associated key issues, when considering the types of questions that marine reserve managers
might try to answer with data obtained from different levels of the evidence hierarchy. Study design codes are as follows: (1) Expert judgment (EJ), (2) Uncontrolled
trial (UT), (3) Uncontrolled time series (UTS), (4) Uncontrolled before after study (UBAS), (5) Uncontrolled interrupted time series (UITS), (6) Controlled trial with
non-randomized treatment (CTNRT), (7) Controlled time series with non-randomised treatment (CTNRT), (8) Cross sectional analysis with non-representative sample
(CSNRS), (9) Cohort study with non-randomised sample (CNRS), (10) Case control study with non-representative sample (CCSNRS), (11) Cross over study with
non-randomised treatment (COSNRT), (12) Controlled before after study with non-randomised treatment (CBASNRT), (13) Controlled interrupted time series with
non-randomised treatment (CITSNRT), (14) Cross sectional analysis with representative sample (CSRS), (15) Cohort study with representative sample (CRS), (16)
Case control study with representative sample (CCSRS), (17) Cross over study with randomised treatment (COSRT), (18) Randomised controlled trial (RCT), (19)
Randomised controlled time series (RCTS), (20) Randomised controlled before-after study (RCBAS), and (21) Randomised controlled interrupted time series (RCITS).

on fish metrics, Edgar et al. (2014) compared observed outcomes
within MPAs to predicted values at the same locations using a
statistical model of the relationship between these metrics and
covariates developed from observations of the metrics in fished
locations outside MPAs. These models where used to predict
the counter-factual situation that would have occurred within
the MPAs had they been fished. A more direct analysis, with
fewer assumptions, would compare the values of these metrics
within treated (MPA) and carefully selected control (non-MPA)
sites, as exemplified by Strain et al. (2019), who selected sites
within 10 kms of MPAs boundaries as control sites in their
global analysis.

Australia’s long-term MPA monitoring programs typically
control for confounding variables by manually selecting control
and treatment sites with similar background characteristics.
Closed (to fishing) and open reef pairs in the Great Barrier Reef
Long Term Monitoring Program, for example, were manually
matched by reef size, distance from shore, wave exposure and
underwater topography (Emslie et al., 2015). Similarly, Edgar and
Barrett (1999)’s control sites were manually matched on the basis
of wave exposure and macrolagal community type.

Manual matching is a simple way to control confounding
variables but it has a number of limitations. If control and
treatment sites are deliberately chosen to be similar, for example,
both have high wave exposure, then the effect of wave exposure

on the outcome of interest cannot be investigated because it
will not vary in the sample data. This can be overcome by
matching sites with covariate attributes, for example, choosing
control and treatment sites that have high, medium and low wave
exposure. It becomes increasingly difficult to do this, however, as
the number of potentially confounding variables increases. The
sample sizes necessary to match all combinations of covariate
attributes may become prohibitive, or suitable sites may simply
be unavailable. Moreover it is difficult for a researcher to prove
that all confounding variables have been properly accounted for
in this process. The researcher’s decision process may also be
called into question as perhaps influenced by unintended or
unconscious biases realized in the site selection process.

Propensity score analysis overcomes some of these limitations
by using regression to collapse the problem of multi-dimensional
comparisons into a single number – the propensity score, which
is subsequently used to guide the calculation of the treatment
effect (Rosenbaum and Donald, 1983; Stuart, 2010; Ramsey et al.,
2019). The method aims to balance the values of potentially
confounding variables between control and treatment sites, and is
gaining traction in terrestrial and marine settings (Andam et al.,
2008; Ahmadia et al., 2015) but it is still relatively under-utilized
in ecology compared to other domains, and as far as we are aware
has not been used to quantify the effects of management in any of
Australia’s marine parks.
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A propensity score is the probability of treatment given
(potentially confounding) covariates. For a simple binary
treatment, such as inside or outside an MPA, it is calculated
using logistic regression, with the treatment status of a site
set as the response variable and the potential confounders
the explanatory variables. Propensity score methods require
that all potentially confounding covariates (variables marked
U in Figure 4) are identified and measured in the treatment
and control sites. Some variants of the method are wasteful
in that only a subset of control sites (those with propensity
scores similar to treatment sites) are subsequently used to
calculate the effect size. Other variants, however, use the
propensity score to weight control sites in these calculations
according to how similar they are to treated sites (Ramsey
et al., 2019). In both cases, the effect size is typically
calculated using a regression model that conditions on
the explanatory variables because the covariates contain
information that may be particularly important for prediction
(e.g., Gelman et al., 2013, Chap. 8).

A potential challenge in this context is the lack of appropriate
control sites (Willis et al., 2003), perhaps because the MPA
designation process and/or a lack of habitat information,
eliminates or restricts the extent of suitable controls. For example,
the absence of mapped reef below 120 m outside the Tasman
Fracture marine park was a complicating factor when estimating
protection-related differences between control and references
sites (Monk et al., 2016). Furthermore, neither manual matching
or propensity score methods can guarantee that all confounding
variables have been properly accounted for. A treatment effect
may also be difficult to detect if the management treatment
displaces little or no activity, or is intermittent, as in the case
of migratory pelagic fish that are only occasionally exposed to
MPA protection, or in the case of poorly enforced restrictions
on anthropogenic activity. In any event, if control sites are not
carefully selected, systematic differences with the treatment sites
will likely serve as a source of contention (Hughes et al., 2016).

Formally Elicit Expert Judgment
All of the evidence hierarchies reviewed here (Figure 1)
place expert judgment at the bottom of the hierarchy without
reservation. Some hierarchies suggest that group (committee)
judgments are better than individual ones but none distinguish
between the types of experts involved, or make any allowance
for the depth of an expert’s experience. To some extent this
is consistent with widely agreed theories of judgment under
uncertainty that suggest groups make better judgments than
individuals, experts make better predictions than laypeople (but
only within their domain), and that an expert’s ability to make
accurate predictions does not improve with experience unless
he or she receives accurate, timely feedback (Burgman, 2005;
Hogarth, 2005).

Nonetheless, the evidence hierarchies are silent on several
relevant issues such as the use of Traditional Ecological
Knowledge (TEK), and the importance of expert judgment
when resources are constrained, for example in least developed
countries where the designation of MPAs lags behind that of
nations with advanced economies (Marinesque et al., 2012).

Many of the disadvantages of expert knowledge can be
ameliorated, through formal elicitation (O’Hagan et al., 2006;
Speirs-Bridge et al., 2010; Martin et al., 2012; Hemming et al.,
2017). Elicitation can help advise (for example) the design of data
collection strategies (Chaloner and Verdinelli, 1995) or provide
estimates of abundance and trends with associated uncertainty
(Fisher et al., 2012; Adams-Hosking et al., 2016). Moreover,
expert opinion can be used to construct statistical models to
support inferential, predictive and causal data analysis (Bedrick
et al., 1996; Denham and Mengersen, 2007; James et al., 2010;
Hosack et al., 2017).

We recommend that wherever possible expert judgments
are elicited in ways that seek to expose uncertainty, control
bias, and ultimately enable learning by comparison to empirical
observations (Kadane, 2011). Elicitation methods may need to
be amended to include culturally appropriate language and
approaches when eliciting TEK, depending on the types of
questions and judgments involved (e.g., Robinson et al., 2016).

Integration of TEK in Australian natural resource
management has accelerated during the last decade by formally
involving Indigenous Australians in environmental management
processes (Bohensky et al., 2013). Notable examples in the AMP
network include collaborations between The Australian Institute
of Marine Science and the Bardi Jawi people of the Southern
Kimberley region of northwest Australia where participatory
mapping was used to document spatial ecological knowledge
of Bardi Jawi Sea Country (Depczynski et al., 2019). Similar
participatory methodologies are currently being applied in
Australia’s north and south-west marine parks.

Clearly Specify an Ambitious Question
Modern interpretations of the EBDM paradigm assume that
managers are able to clearly define the questions that they
seek answers to. Good survey design is fundamental to a
strong evidence base, but good survey design begins with a
clearly defined hypothesis. To operationalize the paradigm it is
therefore essential that environmental managers clearly define
their objectives, articulate the questions that they seek answers
to, and understand the type of analysis necessary to answer
questions that they pose.

It is important to note that the data analysis types described
by Leek and Peng (2015) are nested. This means that if
data are collected in a way that is adequate for a causal
analysis, then they will be adequate for all of the preceding
types of analysis. Hence if managers demand designs that
produce data that is sufficient to answer a (more ambitious)
hypothesis testing type of question, then this data will
automatically be sufficient for the simpler types of question.
The implications of this clear: if the ecological theory and
management context are adequate for identifying ambitious
questions that require a causal analysis then we should
immediately proceed to these types of questions. There is no need
to delay asking these tougher questions while gathering data to
answer simpler ones.

By using the EBDM paradigm to consider how question
type (and associated data analysis) intersects with monitoring
program design, it becomes clear that not all data are created
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equal, and in particular how some types of questions cannot
be adequately answered unless data are collected in a particular
fashion. In the context of MPAs, practical design approaches
to the hardest types of questions are available by combining
techniques such as spatially balanced sampling with regression-
based calculations that incorporate propensity score weights.
It is our opinion that the amount of rigor and evidence
gained from adopting these designs and methods will outweigh
the extra effort need when performing the surveys and
associated analysis.

A significant challenge in this context is the continued shift in
the distribution and phenology of marine species due to climate
change (Poloczanska et al., 2013), set against a background
of static marine park boundaries (Hobday, 2011). Answering
ambitious causal questions about, for example, the effects of
management activities that target pressures such as fishing
or shipping, will need to disentangle the potentially complex
interactions between these activities and climate induced changes
to the values within MPAs. This will require temporally and
spatially extensive observations both inside and outside MPA
boundaries (Teck et al., 2017).

In Australia, the federal government is currently finalizing
a Monitoring, Evaluation, Reporting and Improvement (MERI)
framework for the AMP network, which is designed to answer 15
questions about the values within the AMP and the effectiveness
of management, including ambitious questions that require a

causal data analysis. We hope that this review will help AMP
managers, and MPA managers more generally, meet the pre-
conditions of adaptive management by: (i) identifying the types
of questions and data analysis that are needed to make their
objectives explicit; and (ii) judging the limitations of different
monitoring designs based on the strength of the subsequent
evidence base, and thereby choose a design that best meets their
objectives and constraints.
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