
Methods Ecol Evol. 2020;11:1401–1409.	�  wileyonlinelibrary.com/journal/mee3  |  1401

 

Received: 8 June 2020  |  Accepted: 31 July 2020

DOI: 10.1111/2041-210X.13470  

P R A C T I C A L  T O O L S

A field and video annotation guide for baited remote 
underwater stereo-video surveys of demersal fish assemblages

Tim Langlois1  |   Jordan Goetze2,3  |   Todd Bond1  |   Jacquomo Monk4  |    
Rene A. Abesamis5  |   Jacob Asher6,7  |   Neville Barrett4  |   Anthony T. F. Bernard8,9  |    
Phil J. Bouchet10  |   Matthew J. Birt11  |   Mike Cappo12 |   Leanne M. Currey-Randall12  |    
Damon Driessen3 |   David V. Fairclough3,13  |   Laura A. F. Fullwood3 |   Brooke A. Gibbons1 |    
David Harasti14  |   Michelle R. Heupel12  |   Jamie Hicks15 |   Thomas H. Holmes1,2 |   
Charlie Huveneers16  |   Daniel Ierodiaconou17  |   Alan Jordan4 |   Nathan A. Knott18  |    
Steve Lindfield19  |   Hamish A. Malcolm20  |   Dianne McLean1,11  |   Mark Meekan11  |    
David Miller15 |   Peter J. Mitchell21 |   Stephen J. Newman3,13  |   Ben Radford11 |   
Fernanda A. Rolim22  |   Benjamin J. Saunders3  |   Marcus Stowar12 |    
Adam N. H. Smith23  |   Michael J. Travers3,13  |   Corey B. Wakefield3,13 |    
Sasha K. Whitmarsh16  |   Joel Williams14  |   Euan S. Harvey3

1The UWA Oceans Institute and School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; 2Marine Science Program, 
Biodiversity and Conservation Science, Department of Biodiversity,  Conservation and Attractions, Kensington, WA, Australia; 3School of Molecular and Life 
Sciences, Curtin University, Perth, WA, Australia; 4Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas, Australia; 5Angelo King 
Center for Research and Environmental Management, Silliman University, Dumaguete City, Philippines; 6NOAA Fisheries, Pacific Islands Fisheries Science 
Center, Science Operations Division, NOAA Inouye Regional Center, Honolulu, HI, USA; 7Joint Institute for Marine and Atmospheric Research, University of 
Hawai'i at Mānoa, Honolulu, HI, USA; 8South African Institute for Aquatic Biodiversity, Grahamstown, South Africa; 9Department of Zoology and Entomology, 
Rhodes University, Grahamstown, South Africa; 10Centre for Research into Ecological & Environmental Modelling, School of Mathematics and Statistics, 
University of St Andrews, St Andrews, UK; 11Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, Australia; 12Australian 
Institute of Marine Science, Townsville, Qld, Australia; 13Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and 
Regional Development, Government of Western Australia, North Beach, WA, Australia; 14Fisheries Research, NSW Department of Primary Industries, Taylors 
Beach, NSW, Australia; 15Marine Science Program, Science & Corporate Services Division, Department for Environment and Water, Adelaide, SA, Australia; 
16Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; 17School of Life and Environmental 
Sciences, Centre for Integrative Ecology, Deakin University, Warrnambool, Vic., Australia; 18Fisheries Research, NSW Department of Primary Industries, 
Huskisson, NSW, Australia; 19Coral Reef Research Foundation, Koror, Palau; 20Fisheries Research, NSW Department of Primary Industries, Coffs Harbour, 
NSW, Australia; 21Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK; 22Elasmobranch Research Laboratory, Institute of Biosciences, 
São Paulo State University, São Vicente, SP, Brazil and 23School of Natural and Computational Sciences, Massey University, Auckland, New Zealand

Correspondence
Jordan Goetze
Email: gertza@gmail.com

Funding information
Australian Government's National 
Environmental Science Program; Australian 
Research Data Commons; Gorgon-
Barrow Island Gorgon Barrow Island Net 
Conservation Benefits Fund

Handling Editor: Edward Codling

Abstract
1.	 Baited remote underwater stereo-video systems (stereo-BRUVs) are a popular 

tool to sample demersal fish assemblages and gather data on their relative abun-
dance and body size structure in a robust, cost-effective and non-invasive manner. 
Given the rapid uptake of the method, subtle differences have emerged in the way 
stereo-BRUVs are deployed and how the resulting imagery is annotated. These 
disparities limit the interoperability of datasets obtained across studies, prevent-
ing broadscale insights into the dynamics of ecological systems.
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1  | INTRODUC TION

Our understanding of fish ecology and ability to manage populations 
appropriately require accurate data on species occurrence, abundance, 
body size, distribution and behaviour. Remote video-based sampling 
methods are increasingly being adopted due to: (a) their non-destructive 
nature, (b) ability to sample rare species (Goetze et al., 2019; Harvey, 
Santana-Garcon, Goetze, Saunders, & Cappo, 2018), over broad depth 
ranges (Heyns-Veale et al., 2016; Wellington et al., 2018), (c) provision 
of a permanent record that can be reviewed to reduce interobserver 
variability (Cappo, De'ath, Stowar, Johansson, & Doherty, 2009), (d) abil-
ity to collect concomitant data on habitat (Bennett, Wilson, Shedrawi, 
McLean, & Langlois, 2016; e.g. epibenthic cover and substrate, Collins 
et  al.,  2017) and (e) provision of images for science communication. 
Remote underwater video sampling methods are not subject to diver 
safety restrictions, nor do they suffer from the behavioural biases 
resulting from diver presence (Gray et  al.,  2016; Lindfield, Harvey, 
McIlwain, & Halford, 2014). Multiple remote systems can be deployed 
in the field consecutively to make efficient use of field time and enable 
spatially extensive sampling (Langlois, Radford, et al., 2012).

The use of bait with remote underwater video (BRUV) systems 
increases the relative abundance and diversity of fishes observed, 
particularly species targeted by fisheries, without precluding the 
sampling of fishes not attracted to bait (Coghlan, McLean, Harvey, & 
Langlois, 2017; Harvey, Cappo, Butler, Hall, & Kendrick, 2007; Speed, 
Rees, Cure, Vaughan, & Meekan,  2019). Biases associated with bait 
use have been discussed in various studies (Coghlan et  al.,  2017; 
Dorman, Harvey, & Newman,  2012; Goetze et  al.,  2015; Hardinge, 
Harvey, Saunders, & Newman, 2013). Variation in bait plume dispersal 
and the sensitivity of different fish species to bait is unknown (Harvey 
et al., 2007), and species-specific (Bernard & Götz, 2012), with cryptic 
and sedentary species potentially under-represented (Stat et al., 2019; 
Watson, Harvey, Anderson, & Kendrick, 2005). Despite these limita-
tions, BRUVs have been shown to provide relative measures of species 
richness and abundance for a range of species in a diverse array of 
conditions and habitats (Cappo, Harvey, & Shortis, 2006).

BRUV systems with stereo-video cameras (stereo-BRUVs) 
enable precise measurements of body size (Harvey, Fletcher, & 
Shortis,  2001), which surpass estimates made by divers (Harvey 
et al., 2001). Both length and biomass distribution data are recog-
nized as essential metrics for biodiversity conservation and fish-
eries management reporting (Langlois, Harvey, & Meeuwig, 2012). 
Importantly, stereo-BRUVs provide comparable body size distribu-
tion data to fisheries-dependent methods such as trawls (Cappo, 
Speare, & De'ath, 2004), hook and line (Langlois, Fitzpatrick, et al., 
2012) and trap fishing (Langlois et  al.,  2015). Despite being con-
sidered unsuitable for estimating density, stereo-BRUVs provide a 
cost-effective and statistically powerful method to detect spatio- 
temporal changes in the relative abundance, length and biomass 
distribution of fish assemblages (Bornt et al., 2015; Harvey, Cappo, 
Kendrick, & McLean, 2013; Malcolm, Schultz, Sachs, Johnstone, & 
Jordan,  2015). However, in over 275 studies using stereo-BRUVs 
for a range of objectives (Supporting Information 1), Whitmarsh, 
Fairweather, and Huveneers (2017) found widespread variation in 
methodology, which may prevent interoperability of the data.

We provide a widely accepted protocol for the use of benthic 
stereo-BRUVs including information on design, field operation, 
image annotation, data validation, archiving and synthesis. By pro-
viding a standardized protocol for stereo-BRUVs surveys, we aim 
to reduce variation in methodologies among researchers, and en-
courage the use of Findable, Accessible, Interoperable and Reusable 
(FAIR, Wilkinson et  al.,  2016) workflows to increase the ability to 
synthesize datasets and answer broadscale ecological questions.

2  | STEREO -BRUVs DESIGN

Stereo-BRUV systems consist of a frame (Figure 1a), protecting two 
convergent video cameras inside waterproof housings, attached 
to a base bar (Figure 1b), with some form of baited container fixed 
in front of the cameras (Figure  1e). Systems are generally teth-
ered by rope to surface buoys to facilitate relocation and retrieval 

2.	 We provide the first globally accepted guide for using stereo-BRUVs to survey 
demersal fish assemblages and associated benthic habitats.

3.	 Information on stereo-BRUVs design, camera settings, field operations and image 
annotation are outlined. Additionally, we provide links to protocols for data valida-
tion, archiving and sharing.

4.	 Globally, the use of stereo-BRUVs is spreading rapidly. We provide a standard-
ized protocol that will reduce methodological variation among researchers and 
encourage the use of Findable, Accessible, Interoperable and Reusable workflows 
to increase the ability to synthesize global datasets and answer a broad suite of 
ecological questions.

K E Y W O R D S

monitoring (population ecology), population ecology, sampling
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(Figure 1c). Ballast can be added to frames for use in deep water or 
areas of strong current (Figure 1f).

2.1 | Cameras and photogrammetry

We recommend cameras with full, high-definition resolution of at 
least 1,920  ×  1,080 pixels (Harvey, Goetze, McLaren, Langlois, & 
Shortis,  2010) and a capture rate of at least 30 frames per second 
(note: some models of action cameras can overheat at high resolu-
tion e.g. 4K). Higher camera resolution will improve identification 
of fish and the pixel selection required for measurement. Higher 
frame rates reduce blur on fast-moving species. To maintain stereo-
calibrations, cameras must have video stabilization disabled, and a 
fixed focal length can facilitate measurements both close to and far 
from the camera systems when correctly calibrated (Boutros, Shortis, 
& Harvey,  2015; Shortis, Harvey, & Abdo,  2009). The field of view 
should be standardized and chosen to limit distortion in the image (e.g. 
no more than a medium angle, ~95° H-FOV). When sampling demersal 

fish assemblages at typical maximum range (8 m) from the cameras, 
Boutros et al. (2015) suggested a camera separation <500 mm will re-
sult in a decrease in the accuracy of measurements, with measurement 
precision being a function of 1/(camera separation). Cameras are fixed 
to a rigid base bar to preserve the stereo-calibration required to cal-
culate accurate length and range measurements (Boutros et al., 2015; 
Harvey & Shortis,  1995, 1998; Shortis & Harvey,  1998; Shortis 
et al., 2009). The stereo system pictured in Figure 1 uses two GoPro 
Hero 5 Black cameras, with camera housings separated by 700 mm 
with 7° convergence angle on a steel base bar, although 500 mm with 
a 5° convergence angle is also common.

Stereo-calibrations must be made both prior to and following a field 
campaign. Given the required tolerances involved with stereo-BRUVs 
design, we recommend seeking manufacture and calibration advice 
from recognized providers or adhering to strict specifications. Any 
changes in camera positioning (e.g. if a camera is dismounted during 
battery replacement) will disrupt the stereo-calibration, resulting in 
measurement error. For this reason, most ‘off-the-shelf’ housings re-
main unsuitable for stereo-BRUVs. Figure 1i provides an example of 
a camera that is secured to the housing faceplate to ensure stability. 
Each housing and camera should be uniquely identified, ensuring the 
latter are only used on the system they are calibrated for.

2.2 | Bait

As a general rule, locally sourced, sardine-type oily bait is recom-
mended (Dorman et  al.,  2012), as the oil disperses to attract fish. 
Sourcing sardine bait locally from factory discards (e.g. fish heads, 
tails and guts) will reduce the survey's ecological footprint, cost of 
sampling and potential for disease translocation. We recommend 
0.8–1 kg of roughly crushed bait, positioned between 1.2 and 1.5 m 
in front of the cameras with the mesh bait bag as close to the ben-
thos as possible. Positioning further than 1.5 m from the camera will 
reduce the ability to identify and measure individuals. Bait should be 
replaced after each deployment.

2.3 | Deployment duration

Benthic stereo-BRUVs should be deployed for a standard duration. 
We recommend deployments of 60 min (bottom time), to allow spe-
cies detection (Currey-Randall, Cappo, Simpfendorfer, Farabaugh, 
& Heupel,  2020), and facilitate comparison with historical data. 
Deployments of 30  min have been demonstrated to be sufficient 
for sampling particular species of finfish on shallow temperate reefs 
(Bernard & Götz, 2012; Harasti et al., 2015).

2.4 | Sampling design

Sampling strategies should be designed to ensure valid inferences and 
interpretations of resulting data (Smith, Anderson, & Pawley, 2017). We 

F I G U R E  1   Equipment required for baited remote underwater 
stereo-video system surveys, including (a) mild-steel galvanized 
frame and bridle, (b) stereo base-bar and camera housings, (c) rope 
with detachable float line and two floats, (d) storage container for 
equipment and bait, (e) PVC bait arm (reinforced with fiberglass 
rod) with mesh bait bag and supporting metal diode arm, (f) metal 
weights for deep-water or strong current, (g) long-armed glove 
for handling bait, and (h) dry kit including spare cameras, spare 
batteries, battery charger, micro-SD card reader, micro-SD cards, 
standard tools, cable ties to secure bait bags, silicone grease for 
o-rings and (i) calibrated cameras securely fixed to face plates

(a)

(b)
(c)

(d)

(g)(f)

(e)

(h)
(i)
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recommend spatially balanced statistical routines, such as r package 
MBHdesign (Foster et al., 2019), which can incorporate environmental 
information and legacy sites to create sampling designs with known in-
clusion probabilities (Foster et al., 2017, 2018). Due to the need to revisit 
each site to retrieve stereo-BRUVs after deployment, spatially balanced 
designs may be inefficient for sampling large regions (>10 min transit 
time between samples) and clustered sampling designs may be preferred 
(Hill et al., 2018).

Individual stereo-BRUVs samples should be separated when set 
simultaneously to reduce the likelihood of non-independence due to 
individuals being concurrently sampled by adjacent stereo-BRUVs. 
Separation distance will depend on the mobility of the species and 
the habitat being studied; for typical demersal fish assemblages, a 
minimum of 400  m for 1-hr deployments is recommended (Bond, 
Partridge, et al., 2018) or 250  m for 30-min deployments (Cappo 
et al., 2001).

2.5 | Field logistics

Vessels fitted with a swinging davit arm, or pot-tipper and winch 
are ideal for deploying and retrieving stereo-BRUVs in deeper wa-
ters (Figure  2); however, light-weight stereo-BRUVs (Supporting 
Information 2) can be retrieved by hand. Comparable trap fishing 
retrieval methods are generally the most efficient. Each retrieval de-
sign remains dependent on the type of vessel used, stereo-BRUVs 
weight and size and prevailing sea conditions. Local fishers familiar 

with a study location can provide valuable advice on sampling logis-
tics. Multiple stereo-BRUVs can be deployed concurrently, with ~10 
stereo-BRUVs systems providing optimum logistical efficiency for 
60-min deployment times. Crepuscular periods should be avoided  
(if not the purpose of the study) due to demonstrated changes in fish 
behaviour during these times (Bond, Langlois, et al., 2018; Myers, 
Harvey, Saunders, & Travers, 2016). When sampling in low light con-
ditions, both blue (450–465 nm) and white (550–560 nm) lights can 
be used. White can provide the best imagery for identification (Birt, 
Stowar, Currey-Randall, McLean, & Miller, 2019), but blue has been 
found to avoid potential behavioural biases and reduce backscatter 
from plankton at night (Fitzpatrick, McLean, & Harvey, 2013). Field 
methodology checklists are provided in Supporting Information 3.

2.6 | Image annotations

2.6.1 | Software

Software specifically designed to annotate and measure fish from 
stereo-video will substantially increase the cost-efficiency and con-
sistency of image annotation (Gomes-Pereira et al., 2016). For stereo-
video, the challenge is not the annotation, but the calibration of imagery 
to provide accurate length and range measurement. Annotation 
software and packages with measurement capabilities include Vision 
Measurement System (Harman, Harvey, & Kendrick,  2003), NIH 
Image (Dunbrack, 2006), sebastes package in Python (Boldt, Williams, 

F I G U R E  2   Methods to safely deploy and retrieve baited remote underwater stereo-video systems (BRUVs) from different size vessels 
using different equipment. (a) Deploying a stereo-BRUVs using an A-frame and pulley at the vessel's stern; (b) deploying a stereo-BRUV with 
weights and a light from the side of a vessel; (c) deploying light-weight stereo-BRUV from a small rigid inflatable (see Supporting Information 
2); (d) using a ‘pot winch’ and ‘pot tipper’ to quickly retrieve stereo-BRUVs in deep water; (e) retrieving a stereo-BRUVs using a davit arm 
from the side of a vessel; (f) retrieving stereo-BRUVs by hand using an repurposed anchor hauler in the Philippines
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Rooper, Towler, & Gauthier, 2018), StereoMorph package in r (Olsen 
& Westneat,  2015) and EventMeasure plus CAL (calibration soft-
ware) from SeaGIS (seagis.com.au). EventMeasure and CAL is the 
most widely used option due to its established workflow, ability to 
create 3D stereo-calibrations and active development, which enables 
cost-effective and consistent point and stereo annotation of video 
imagery. Manual image annotation and measurement can be time 
consuming, but the emerging field of automated image annotation 
provides promise of increased cost efficiency and collection of novel 
metrics (Marini et al., 2018).

2.6.2 | Annotation metadata

Field metadata (Supporting Information 4) should be used to popu-
late a unique code for each sample and annotation set. Time on the 
seabed should be annotated to provide a start time for the stereo-
BRUVs deployment period. It is important that the link between an-
notations and imagery is maintained.

2.6.3 | Abundance estimates

We recommend all fish be identified to the lowest taxonomic level 
possible. The standard metric of abundance is MaxN, the maximum 
number of individuals of a given species present in a single video frame 
(Priede, Bagley, Smith, Creasey, & Merrett, 1994). MaxN is widely used 
for BRUVs (Whitmarsh et al., 2017), as it is conservative and ensures 
that no individual is counted more than once (Schobernd, Bacheler, & 
Conn, 2013). While it has frequently been suggested that MaxN un-
derestimates both small- and large-bodied individuals, the only study 
so far to evaluate this has found MaxN provides a representative 
sample of size distributions (Coghlan et al., 2017). Synchronized and 
calibrated left and right cameras allow the analyst to determine the 
range of fish in the field of view and ensure they are within a prede-
fined distance from the cameras. Typically, fish are counted within a 
maximum distance of 8 m, beyond which length estimates are likely 
to be inaccurate unless specialist calibrations have been conducted. 
Annotations of the current MaxN may be updated when individual 
fish are more clearly visible, and therefore easier to measure, by taking 
photogrammetric measurements of individual body length at the last 
MaxN annotated.

2.6.4 | Body size measurements

Synchronized and calibrated stereo-video streams are used to accu-
rately measure body size. All individuals of each species should be 
measured at their MaxN. We recommend measuring fork length rather 
than total length, as it is more easily definable across a range of spe-
cies. Biomass estimates typically rely on total length, but fork length 
to total length conversions can be used to complete these calculations 
(Froese & Pauly, 2019). For species where total length can be unreliable 

or there is no definable fork, body size is estimated using other meas-
ures (e.g. disk measurements for rays). Photogrammetric length meas-
urements are typically made with some degree of error, which can be 
minimized by measuring individuals when they are as close to cameras 
as possible with both the nose and the tail-fork clearly visible, still or 
slowly moving, at an angle <45° perpendicular to the cameras and 
straight (not bent from turning). Defining cut-offs for measurement 
error across projects will help to maintain accurate and precise body 
size estimates, we provide recommended stereo-measurement length 
rules for EventMeasure in Supporting Information 5. If fish cannot be 
measured within these parameters, a ‘3D point’ may be used for anno-
tation, which records the 3D location of the fish to ensure it is within 
the sampling area (Harvey, Fletcher, Shortis, & Kendrick, 2004). To cre-
ate a relative abundance metric standardized to a consistent sample 
area, abundance should be summed from the lengths and 3D points 
at the MaxN for each species. For biomass estimates, 3D points pro-
vide a basis for extrapolating a median length value to fish that could 
not be measured (Wilson, Graham, Holmes, MacNeil, & Ryan, 2018). 
When large tightly packed schools are encountered, fish that cannot 
be measured should have 3D points. When lengths or 3D points are 
not possible for every fish, multiple individuals can be assigned to a 
single length or 3D point, but care should be taken to represent the 
range of body sizes within a school.

2.6.5 | Behaviour

A range of behavioural observations, including time of first arrival, 
time to first feed and minimum approach distance, may also be cal-
culated (Coghlan et al., 2017; Goetze et al., 2017).

2.6.6 | Interoperable and reproducible annotations

Video imagery enables annotators to work collaboratively to ensure 
identifications are consistent. A library of reference images, such as that 
supported by EventMeasure, will assist with identification and training. 
It is acknowledged that some genera cannot be consistently identified 
to species level from imagery, so individuals are recorded at genus–fam-
ily levels (e.g. flathead: Platycephalus spp). For unidentified individuals, 
a common convention is that fish that are potentially identifiable later 
are annotated to Genus sp1–10, this permits a batch rename at a later 
stage if the species is successfully identified. Individuals that are clearly 
unidentifiable to species are annotated as Genus sp.

2.6.7 | Habitat classification

Information on relief, habitat types and benthic composition (e.g. 
percent cover of benthos types) should be recorded from each de-
ployment (Bennett et  al.,  2016; Collins et  al.,  2017), to facilitate in-
vestigation of fish–habitat relationships and to enable the sampling 
field of view to be standardized or controlled for subsequent data 
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analysis (McLean et al., 2016). It is important that these data are an-
notated consistently and it is recommended that they are mapped 
to the CATAMI classification scheme (Althaus et al., 2015) and a 0–5 
estimate of benthic relief (Polunin & Roberts, 1993; Wilson, Graham, 
& Polunin, 2007). An example of habitat composition and relief an-
notation schema is provided in a GitHub repository (Langlois, 2017). 
Forward facing imagery can be annotated in a range of software, in-
cluding TransectMeasure from SeaGIS (seagis.com.au), BenthoBox 
(https://benth​obox.com), CoralNet (https://coral​net.ucsd.edu/) and 
Squidle+ (https://squid​le.org), which all provide suitable workflows 
and comparable data outputs.

2.6.8 | Quality control and data curation

Quality control and data curation are vital to ensure FAIR data work-
flows (Wilkinson et al., 2016). All corrections should be made within 
the original annotation files to ensure data consistency over time. 
We recommend the following approaches to ensure quality control:

•	 Annotators should complete ‘training’ videos where species IDs 
and MaxN are known and can be used to assess competency.

•	 A different annotator should complete the MaxN and length mea-
surement annotations to provide an independent check of the 
species identifications.

•	 Quality assurance should be carried out by a senior video analyst 
or researcher and involves a random review of 10% of annotated 
videos and data within a project. If accuracy is below 95% for all 
identifications and estimates of MaxN, reannotation should be 
undertaken.

•	 Unique identifiers of annotators and dates of when imagery was 
annotated should be maintained to provide a data checking trail 
(see Supporting Information 4).

r workflows and function packages are provided in a GitHub re-
pository (Langlois, 2020) to enable validation with regional species 
lists and likely minimum and maximum sizes for each species.

2.6.9 | Data storage, discoverability and release

We encourage open data policies and recommend archiving and 
sharing stereo-BRUVs annotations on global biodiversity data 
repositories, such as Ocean Biogeographic Information System, 
Global Biodiversity Information Facility and the recently devel-
oped GlobalArchive (globalarchive.org). GlobalArchive is a cen-
tralized repository that allows open access and private sharing of 
fish image annotation data from stereo-BRUVs or similar imagery-
based sampling techniques. GlobalArchive allows users to store 
data in a standardized and secure manner and makes meta-data 
discoverable, thus encouraging collaboration and synthesis of data-
sets within the community of practice. We recommend all quality-
controlled annotation data and any associated calibration, taxa and 

habitat data should be uploaded to GlobalArchive and we encour-
age that all data should be made publicly available via the public 
data option. As an example, the Australian standards for data man-
agement, discoverability and release are provided in Supporting 
Information 6.

3  | CONCLUSION

Globally, stereo-BRUVs usage is increasing rapidly. The stand-
ardization of stereo-BRUVs surveys and annotation will facilitate 
the synthesis of comparable data over continental and global 
scales and provide rich and interoperable data to inform natu-
ral resource management. Variation in methodology has con-
strained the interoperability of these data to date (Whitmarsh 
et al., 2017), we encourage researchers to standardize and share 
technical improvements and issues via an established on-line 
forum or working group (Supporting Information 7).

Achieving consistent field methodology and FAIR annotation, 
with data archiving and sharing protocols, provide the greatest bar-
rier to the globally consistent uptake and impact of stereo-BRUVs. 
We provide a standardized protocol that will reduce methodological 
variation among researchers and encourage the use of FAIR work-
flows to increase the ability to synthesize datasets and answer a 
range of ecological questions.
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