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a b s t r a c t

Spatial distribution of sponge species richness (SSR) and its relationship with environment are important
for marine ecosystem management, but they are either unavailable or unknown. Hence we applied
random forest (RF), generalised linear model (GLM) and their hybrid methods with geostatistical tech-
niques to SSR data by addressing relevant issues with variable selection and model selection. It was
found that: 1) of five variable selection methods, one is suitable for selecting optimal RF predictive
models; 2) traditional model selection methods are unsuitable for identifying GLM predictive models and
joint application of RF and AIC can select accuracy-improved models; 3) highly correlated predictors may
improve RF predictive accuracy; 4) hybrid methods for RF can accurately predict count data; and 5)
effects of model averaging are method-dependent. This study depicted the non-linear relationships of
SSR and predictors, generated spatial distribution of SSR with high accuracy and revealed the association
of high SSR with hard seabed features.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The broad continental shelf offshore northern Australia is
characterised by extensive areas of carbonate banks, terraces and
isolated pinnacles. These raised features are of important conser-
vation value because they provide potential habitats for sponge
communities and have been assigned as Key Ecological Features
(KEFs) of regional significance within the Oceanic Shoals
Commonwealth Marine Reserve (CMR) (Australia, 2012a, b) (Fig. 1).
Information on the distribution of the communities is limited
(Huang et al., 2011), however. Previous assessments of the linear
relationship of sponge species with environmental variables are
provided for the communities on the Van Diemen Rise and the
importance of carbonate banks and other raised geomorphic fea-
tures as biodiversity hotspots was studied (Przeslawski et al., 2014,
2015). An improved understanding of the spatial patterns of sponge
Geology, S€olvegatan 12, SE-
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species richness (SSR) is important for refining knowledge
regarding the ecological significance of the KEFs and for the
informed monitoring of ecosystem health and marine environ-
mental management and conservation. The spatially continuous
data of SSR across the region is not readily available and the re-
lationships between the richness and environmental variables
across the region are largely unknown. Therefore, predictive
models for species richness may address the spatial data gaps and
could be used to investigate the ecological relationships.

Many statistical and mathematical techniques can be used for
generating spatially continuous predictions for numerical variables
(Li and Heap, 2014; Li et al., 2011b, 2011c), but they are often data
specific and their performance depends on many factors (Li and
Heap, 2011). The accuracy of the predictions is crucial for
informed monitoring design and evidence-based policy for marine
environmental management and conservation of the CMR. Due to
its high predictive accuracy in data mining and other disciplines
(Cutler et al., 2007; Diaz-Uriarte and de Andres, 2006; Prasad et al.,
2006; Shan et al., 2006), random forests (RF) method was intro-
duced to spatial statistics by combining it with commonly used
geostatistical methods to predict the spatial distribution of seabed
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. a) Location of the study areas (A, B, C, D, E, F, G and H) and associated
geomorphic features in the Timor Sea region, northern Australian marine margin
overlaid with bathymetry; the border of Oceanic Shoals Commonwealth Marine
Reserve is indicated by grey line; and Key Ecological Features (KEFs) include: the
carbonate banks and terraces of the Van Diemen Rise (North Marine Region) (blue);
the carbonate banks and terraces of the Sahul Shelf (Northwest Marine Region) (yel-
low), and the pinnacles of the Bonaparte Basin (North and Northwest Marine Regions)
(black). b) The sampling transects (black dots) within each study area overlaid with
associated geomorphic features; and in total 77 sponge species richness samples were
available for this study. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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sediments (Li, 2011; Li et al., 2010b). This development opened an
alternative source of methods for spatial prediction. The hybrid
methods, RFOK and RFIDW (i.e. the hybrids of RF with ordinary
kriging (OK) or inverse distance weighting (IDW)), have shown
high predictive capacity in the marine environmental sciences (Li
et al., 2011b, 2011c, 2012b) and terrestrial environmental sciences
(Sanabria et al., 2013a, 2013b). However, these methods have not
been applied to count data (e.g. SSR data) and may also be data-
type specific like other spatial prediction methods.

Although generalised linear models (GLM) and its hybrid
methods with a geostatistical technique (i.e., RKGLM) were applied
to percentage data (Li et al., 2011b, 2011c, 2010b), they were proven
to be less accurate than RF and its hybrid methods with geo-
statistical techniques. For count data, the commonly used statistical
modelling method is GLM, so it was used in this study as a control
to be compared with other methods. The hybrid methods of GLM
with geostatistical methods have not yet been applied to any other
types. This is the first attempt to apply them to count data and test
their predictive accuracy for such data type.

Variable selection (or feature selection) is essential for selecting
an optimal RF predictive model from a number of candidate models
(Li, 2013a, b; Li et al., 2016), although RF is often argued to be
insensitive to non-important variables (Okun and Priisalu, 2007)
and can deliver good predictive performance even when most
predictive variables are noisy (Diaz-Uriarte and de Andres, 2006).
The performance of RF is also argued to depend only on the number
of strong features and not on the number of noisy variables if
sample size is large (500e1000) (Biau, 2012). Variable selection is
also essential for its hybrid methods (Li et al., 2011a, b, 2012a, b).
Several variable selection methods (i.e. variable importance (VI),
averaged VI (AVI), knowledge-informed AVI (KIAVI), Boruta and
regularized RF (RRF)) were tested for RF based on a model selection
procedure developed previously by Li et al. (2013), where predic-
tive accuracy was used to determine the selection of each predic-
tive variable; and AVI and Boruta (Kursa and Rudnicki, 2010) were
recommended for selecting RF and other predictive models (Li
et al., 2016).

For GLM, besides the conventional model selection approaches
such as stepAIC (Venables and Ripley, 2002), RF has been shown to
be able to select useful predictors for GLM (Arthur et al., 2010). This
may provide a useful approach for selecting informative predictors
for GLM and its hybrid methods with geostatistical methods in this
study.

It has been argued that model averaging can often improve
predictive accuracy (Marmion et al., 2009). This was tested in the
geostatistical context, but findings amongst studies have not been
consistent. For example, model averaging did not significantly
improve seabedmud predictions (Li et al., 2011b) and seabed gravel
predictions (Li, 2013a) although it was found to improve seabed
sand predictions (Li et al., 2012b). Therefore, further study is
warranted.

In this study, we aim to select the most accurate model to pre-
dict the spatial distribution of SSR within the Oceanic Shoals CMR
in the Timor Sea offshore, northern Australia, based on samples of
SSR using acoustic multibeam data and their derived variables as
predictive variables. To achieve this, we: (1) tested the predictive
accuracy of models based on GLM, RF and their hybrid methods
with OK and IDW; (2) tested the effects of various predictor sets on
the predictive accuracy of these methods; (3) examined the influ-
ence of a few feature selection methods on the most accurate
predictive model identified; and (4) predicted the spatial distri-
bution of sponge richness using the most accurate model and
visually examined the predictions.

2. Data processing and methodology

2.1. Study region

The study region is located in the Timor Sea region, northern



Table 1
Predictive variables and their corresponding number.

No Predictive variable No Predictive variable

1 long 26 tpi5
2 lat 27 tpi7
3 sand 28 lmi3
4 gravel 29 plan_curv3
5 bs25 30 plan_curv5
6 bs11 31 plan_curv7
7 bs14 32 relief3
8 bs34 33 relief5
9 bs_o 34 relief7
10 bs_homo_o 35 slope3
11 bs_entro_o 36 slope5
12 bs_var_o 37 prof_curv3
13 bs_lmi_o 38 prof_curv5
14 bathy_o 39 prof_curv7
15 tpi_o 40 bs_entro3
16 slope_o 41 bs_entro5
17 plan_cur_o 42 bs_entro7
18 prof_cur_o 43 bs_homo3
19 relief_o 44 bs_homo5
20 rugosity_o 45 bs_homo7
21 dist.coast 46 bs_var3
22 rugosity3 47 bs_var5
23 rugosity5 48 bs_var7
24 rugosity7 49 bs_lmi5
25 tpi3 50 geom
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Australia (Fig. 1). Eight areas (A - H) in the region were surveyed in
2009 (Heap et al., 2010), 2010 (Anderson et al., 2011) and 2012
(Nichol et al., 2013). These areas were selected to encompass a
variety of seabed geomorphic features and water depths. In these
surveys, high-resolution multibeam bathymetry and backscatter
data and co-located sampling transects across the eight areas were
acquired. The areas comprise a spatially complex suite of geomor-
phic features including shallow flat-topped banks, terraces, ridges,
depressions and plains. In survey areas A e D, sampling sites were
selected to cover all of the seabed features andwater depths; and in
the survey areas E eH, sampling sites were selected using a
spatially-balanced random stratified method as stated in above
post-survey reports and further detailed in relevant studies
(Przeslawski et al., 2011; Radke et al., 2015, 2017).

2.2. Sponge samples

Sponges were collected with an epibenthic sled towed for
approximately 50e100 m at 1.5e2 knots in each sampling site. The
sled was 1.5 � 1 m (width x height) and fitted with a 6 m long,
45 mm stretch diamond net. Specimens were sorted to phylum,
weighed, and preserved in ethanol for taxonomic identification.
Taxonomic vouchers of sponges were deposited at theMuseum and
Art Gallery of the Northern Territory (MAGNT, formerly the
Northern Territory Museum). A thick section and spicule slide was
prepared from each sponge voucher using standard methods
(Hooper, 1996; Rützler, 1978), identified to genus following Hooper
and Van Soest (2002), and assigned to valid species as listed in the
current version of the World Porifera database (Van Soest et al.,
2014) using available taxonomic literature. A unique code or
operational taxonomic unit (OTU) was assigned to unknown or
undescribed taxa (e.g. Scleritoderma sp. NT0205). We used pres-
ence/absence data due to potential issues arising from sled sam-
pling such as fragmentation and unstandardised effectiveness of
collection (Schlacher et al., 2007). There were 85 samples collected,
and of which eight samples were excluded due to the uncertainty
about transect length. In total, 77 samples were selected and used
in this study. SSR is count data based on the presence/absence data,
ranging from 1 to 39, with amean of 10.48 and a standard deviation
of 10.53. The point locations of samples are the mid-point of each
transect.

2.3. Predictive variables

Following a preliminary analysis based on data availability and
the relationships with seabed hardness as discussed above and in
previous studies, 80 predictive variables were available for this
study. They are:

1) Two location variables: latitude (lat) and longitude (long),
2) Three sediment variables: mud, sand and gravel,
3) Bathymetry (bathy),
4) Twenty-seven backscatter (bs) variables (bs10 to bs36): a

diffused reflection of acoustic energy due to scattering process
back to the direction from which it's been generated, measured
as the ratio of the acoustic energy sent to a seabed to that
returned from the seabed, normalised to incidence angles be-
tween 10� and 36�,

5) Seventeen derived variables from bs25 based on object and
windows (30 m, 50 m and 70 m) approach:
a. bs_o,
b. homogeneity (bs_homo_o, bs_homo3, bs_homo5,

bs_homo7),
c. entropy (bs_entro_o, bs_entro3, bs_entro5, bs_entro7),
d. Local Moran I (bs_lmi_o, bs_lmi3, bs_lmi5, bs_lmi7),
e. Variance (bs_var_o, bs_var3, bs_var5, bs_var7).
6) Twenty-nine derived variables from bathy using object and

windows (30 m, 50 m and 70 m) approach:
a. bathy_o,
b. lmi_o, lmi3, lmi5, lmi7,
c. Topographic position index (tpi_o, tpi3, tpi5, tpi7),
d. Seabed slope (slope_o, slope3, slope5, slope7),
e. Planar curvature (plan_cur_o, plan_cur3, plan_cur5,

plan_cur7),
f. Profile curvature (prof_cur_o, prof_cur3, prof_cur5,
prof_cur7),

g. Topographic relief (relief_o, relief3, relief5, relief7),
h. Seabed rugosity (rugosity_o, rugosity3, rugosity5, rugosity7).

7) Distance to coast (dist.coast)

Acquisition and processing of multibeam bathymetry, back-
scatter and their derived variables have been detailed in previous
studies (Li et al., 2013; Siwabessy et al., 2013) and in Appendix A. All
these variables were numerical and available for each grid cell at
250 m resolution in the eight study areas for generating the spatial
predictions of SSR. They were also available at the 77 sample lo-
cations for developing models to predict SSR (Appendix B) and
some summary statistics of these variables were also provided
(Appendix B1).
2.4. Preliminary selection of predictive variables

Therewere strong correlations among some predictive variables
based on Spearman's rank correlation (r) that was used due to non-
linear relationships between some variables. Amongst the highly
correlated predictors (i.e., r � 0.99), the variable with the highest r
with species richness was retained. As a result, in total 49 variables
were retained (Table 1). The bs25 was retained as it is the default
predictor for Geoscience Australia. The Spearman's rank correla-
tions of SSR and these variables were presented in Appendix C. The
Pearson's correlation coefficients (r) were also calculated
(Appendix D). In addition, a categorical variable, geomorphic fea-
tures (geom), was also considered in this study and was the 50th

predictor (Table 1).
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2.5. Predictive methods

In this study, we used GLM and RF and their hybrid methods
with geostatistical techniques (Table 2) to develop an optimal
predictive model to predict SSR. GLM was used as a control for the
count data. As regression kriging was argued to be more accurate
than other methods (Hengl, 2007; Li and Heap, 2008), GLMOK, also
known as RKGLM (i.e., the combination of GLM and OK) (Li et al.,
2010a, 2011b, 2010b), was then used in this study. We also devel-
oped a new combination of GLM and IDW (GLMIDW) for this study.
Poisson distribution was used in GLM.

The R function, randomForest developed by Liaw and Wiener
(2002), was used to develop a model to predict the spatial distri-
bution of SSR. The default values of mtry, ntree and nodesize are
often good options (Diaz-Uriarte and de Andres, 2006; Liaw and
Wiener, 2002), which were also observed in studies in marine
environmental sciences (Li et al., 2012b, 2013), therefore the default
values were used for these parameters. The parameters for RFOK
and RFIDW were based on the minimum number of samples per
region and findings of previous studies (Li, 2013b; Li et al., 2011a).
That is, of these hybrid methods, a distance power of 2 and a
searching window size of 7 were used for IDW, and a Spherical
model and a searching window size of 7 were used for OK.
Although a thorough test was not performed, seven was identified
as a better choice than 4 or 5 based on a preliminary test of the full
model (i.e. the model with all 49 numerical predictors).

We also tested if model averaging could improve the predictive
accuracy. In this study, we averaged the predictions of RFOK and
RFIDW (RFOKRFIDW), of RF, RFOK and RFIDW (RFRFOKRFIDW), of
GLMOK and GLMIDW (GLMOKGLMIDW), of GLM, GLMOK and
GLMIDW (GLMGLMOKGLMIDW) to examine the effects of model
averaging on predictive accuracy.
2.6. Variable selection and model development

2.6.1. Random forest
The variable selection was based on a procedure developed for

RF in previous studies (Li, 2013a, b; Li et al., 2013), where the fea-
tures were selected based on variable importance and more
Table 2
Full name for the abbreviations of all modelling methods, feature selection methods
and measures of model performance in this study.

Abbreviation Full name

GLM Generalised linear model
IDW Inverse distance weighting
OK Ordinary kriging
RF Random forest
rfe Recursive feature selection
RMAE Relative mean absolute error
RRMSE Relative root mean square error
SSR Sponge species richness
VEcv Variance explained by predictive models
VI Variable importance
AVI Averaged VI
GLMGLMOKGLMIDW The average of GLM, GLMOK and GLMIDW
GLMIDW The hybrids of GLM with IDW
GLMOK The hybrids of GLM with OK
GLMOKGLMIDW The average of GLMOK and GLMIDW
KIAVI Knowledge-informed AVI
RFIDW The hybrids of RF with IDW
RFOK The hybrids of RF with OK
RFOKRFIDW The average of RFOK and RFIDW
RFRFOKRFIDW The average of RF, RFOK and RFIDW
RKGLM The hybrids of GLM with OK
RRF Regularized RF
VSURF Variable selection using RF
importantly on the accuracy of the resultant predictive model. The
final selection of a predictor was based on its contribution to pre-
dictive accuracy, that is, only those predictors that could improve
the predictive accuracy were selected. This procedure involved two
steps. One step involved selecting model predictors (i.e., feature
selection), and the other was to estimate the predictive accuracy of
the model (addressed in the next section). To select predictive
variables, we adopted the same principle as used in rfcv in ran-
domForest package in R (Liaw and Wiener, 2002), that is, identi-
fying and removing the least important variables based on the
importance of predictive variables.

Five feature selection methods were used to select predictors in
this study: (1) averaged variable importance (AVI), (2) Boruta, (3)
knowledge informed AVI (KIAVI) as detailed in previous studies (Li
et al., 2013, 2016), (4) recursive feature selection (rfe) (Kuhn, 2014)
and (5) variable selection using RF (VSURF) (Genuer et al., 2015).
The AVI and Boruta were chosen because they produced the most
accurate predictive models in a previous study (Li et al., 2016); the
remaining three methods were used as they may lead to accuracy
improved RF models for count data. Due to the randomness asso-
ciated with the importance of predictive variables generated by RF
algorithm, the least important variable(s) may change with indi-
vidual iterations; meanwhile correlated variables may also affect
the order of the least important variable(s). Therefore, the R pack-
age ‘extendedForest’ (Smith et al., 2011) was used with 100 repe-
titions to stabilise the variable importance of RF and to generate the
average values of variable importance that were used to select the
predictors. The process of the model development was detailed in
Table 3. We reduced the full model that used all numerical pre-
dictors (Table 1) by progressively removing the least important
variable(s) from the previousmodel based on AVI, which resulted in
23 models.

The next step was to identify the important and unimportant
predictors based on the predictive accuracy of the models devel-
oped so far (Li et al., 2016). The important predictors were added
back to the most accurate model based on AVI (i.e. model 22) to
determine if further improvement was possible, which was
referred to as KIAVI. We also examined if the inclusion of a cate-
gorical variable, geomorphic features (geom), could improve the
accuracy because geom was considered to be a potentially impor-
tant predictor. We then repeated the above procedure, which
resulted in a further 10 models (i.e. models 24e33).

From model 24 onwards, we tested to see if the accuracy could
be improved by removing geom from model 24. This generated a
further 7 models (i.e. models 34e40) and also identified further
unimportant predictors.

We then removed the unimportant predictors from the most
accurate model identified so far (i.e. model 34), which resulted in
three models (i.e. models 41e43). Model 43 was further simplified
by removing the least important variables based on AVI, which
generated another three models (i.e. models 44e46). For model 46,
removal the least important variable would have led to a model
identical to model 40, and so no further model reduction was
pursued.

We used Boruta to search for the important predictors for RF.
The default value (i.e., 100) and the values of 2000 and 5000 were
used for the maximal number of importance source runs in Boruta,
which resulted in three models. For model 1, long, lat, sand, bs34,
bathy_o, slope_o, prof_cur_o, rugosity_o, dist.coast, rugosity3, tpi3,
tpi5, tpi7, relief3 and prof_curv5, bs_entro7were used. Model 2 was
similar to model 1, with removal of bs34 and tpi7 and adding
bs_var7 to the predictors. For model 3, long, lat, prof_cur_o, rugo-
sity_o, tpi3, tpi5 and relief3 were used.

The rfe selected all 49 variables, which produced a model
identical to the full model. The VSURF selected three variables that



Table 3
A brief summary of RF modelling process for sponge species richness data using various feature selection methods and predictive variables. 1) models 1e23 based on the AVI
using 49 variables; 2) models 24e33 based on KIAVI using the important predictors identified from models 1e23 and also included geomorphic features (geom) as an
additional predictor; 3) models 34e40 based on KIAVI using model 24 and the AVI; 4) models 41e43 based on KIAVI by removing the unimportant predictors identified from
model 34e40; and 5) model 44e46 based on KIAVI by using model 43 and the AVI. The corresponding predictor for each number is listed in Table 1.

Model Modelling process Predictors No. of
predictors

1 Full model: all 49 numerical predictors All 49 numerical variables 49
2 model 1: - bs_entro_o, bs_var_o, plan_cur_o, plan_cur7, slope5, bs_entro3, bs_homo5,

bs_var3, bs_lmi5
1:10, 13:16, 18:30, 32:35, 37:39, 41:43, 45, 47:48 40

3 model 2: - bs_lmi_o, relief_o, rugosity7, plan_curv5 1:10, 14:16, 18, 20:23, 25:29, 32:35, 37:39, 41:43, 45,
47:48

36

4 model 3: - gravel, bs_homo_o, lmi3, plan_curv3, relief7, prof_curv3, prof_curv7, bs_homo3,
bs_var5

1:3, 5:9, 14:16, 18, 20:23, 25:27, 32:33, 35, 38, 41:42,
45, 48

27

5 model 4: - bs14, tpi_o, relief5, slope3, bs_homo7 1:3, 5:6, 8:9, 14, 16, 18, 20:23, 25:27, 32, 38, 41:42, 48 22
6 model 5: - rugosity5, tpi7, bs_entro5 1:3, 5:6, 8:9, 14, 16, 18, 20:22, 25:26, 32, 38, 42, 48 19
7 model 6: - bs25 1:3, 6, 8:9, 14, 16, 18, 20:22, 25:26, 32, 38, 42, 48 18
8 model 7: - slope_o 1:3, 6, 8:9, 14, 18, 20:22, 25:26, 32, 38, 42, 48 17
9 model 8: - bs_var7 1:3, 6, 8:9, 14, 18, 20:22, 25:26, 32, 38, 42 16
10 model 9: - prof_curv5 1:3, 6, 8:9, 14, 18, 20:22, 25:26, 32, 42 15
11 model 10: - bs_entro7 1:3, 6, 8:9, 14, 18, 20:22, 25:26, 32 14
12 model 11: - sand 1:2, 6, 8:9, 14, 18, 20:22, 25:26, 32 13
13 model 12: - dist.coast 1:2, 6, 8:9, 14, 18, 20, 22, 25:26, 32 12
14 model 13: - bs_o 1:2, 6, 8, 14, 18, 20, 22, 25:26, 32 11
15 model 14: - rugosity_o 1:2, 6, 8, 14, 18, 22, 25:26, 32 10
16 model 15: - bs34 1:2, 6, 14, 18, 22, 25:26, 32 9
17 model 16: - relief3 1:2, 6, 14, 18, 22, 25:26 8
18 model 17: - bathy_o 1:2, 6, 18, 22, 25:26 7
19 model 18: - bs11 1:2, 18, 22, 25:26 6
20 model 19: - prof_curv_o 1:2, 22, 25:26 5
21 model 20: - rugosity3 1:2, 25:26 4
22 model 21: - tpi5 1:2, 25 3
23 model 22: - tpi3 1, 2 2
24 model 21: þ bs_var7, bs_entro7, dist.coast, bs_o, bs34, bathy_o, bs11, geom 1:2, 25, 48, 42, 21, 9, 8, 14, 6, 50 11
25 model 24: - bs_var7 1:2, 25, 42, 21, 9, 8, 14, 6, 50 10
26 model 25: - bs_entro7 1:2, 25, 21, 9, 8, 14, 6, 50 9
27 model 26: - bs_o 1:2, 25, 21, 8, 14, 6, 50 8
28 model 27: - tpi3 1:2, 21, 8, 14, 6, 50 7
29 model 28: - bathy_o 1:2, 21, 8, 6, 50 6
30 model 29: - bs34 1:2, 21, 6, 50 5
31 model 30: - bs11 1:2, 21, 50 4
32 model 31: - geom 1:2, 21 3
33 model 32: - lat 1, 21 2
34 model 21: þ bs_var7, bs_entro7, dist.coast, bs_o, bs34, bathy_o, bs11 1:2, 25, 48, 42, 21, 9, 8, 14, 6 10
35 model 34: bs_var7 1:2, 25, 42, 21, 9, 8, 14, 6 9
36 model 35: - bs_entro7 1:2, 25, 21, 9, 8, 14, 6 8
37 model 36: - tpi3 1:2, 21, 9, 8, 14, 6 7
38 model 37: - bs_o 1:2, 21, 8, 14, 6 6
39 model 38: - bs34 1:2, 21, 14, 6 5
40 model 39: - bathy_o 1:2, 21, 6 4
41 model 34: - bs_o 1:2, 25, 48, 42, 21, 8, 14, 6 9
42 model 34: - bathy_o 1:2, 25, 48, 42, 21, 9, 8, 6 9
43 model 34: - bs_o, bathy_o 1:2, 25, 48, 42, 21, 8, 6 8
44 model 43: - bs_var7 1:2, 25, 42, 21, 8, 6 7
45 model 44: - bs_entro7 1:2, 25, 21, 8, 6 6
46 model 45: - tpi3 1:2, 21, 8, 6 5
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were identical to those in model 22 based on AVI. Thus no further
modelling work was needed for these two methods.

Finally, we examined the residuals of RF for the most accurate
model developed so far (i.e., model 43) and found the square root
transformation could normalise the residuals. We then applied OK
to the transformed the residuals and tested whether the predictive
accuracy could be further improved.
2.6.2. Generalised linear model
Three traditional model selection approaches for GLM were

used to select predictive models: (1) stepAIC; (2) dropterm and (3)
anova (Venables and Ripley, 2002). We used a backward direction
with a k ¼ log(n) for stepAIC, chi-square test with a k ¼ log(n) for
dropterm, and chi-square test for anova. Firstly, we used stepAIC to
choose a model (i.e. GLM1) from a full model, containing all 49
numerical predictors. We then simplified GLM1 using dropterm
and anova to remove non-significant predictors and developed a
further model (i.e. GLM2). We then considered possible two-way
interactions of remaining predictors in the model with lowest AIC
(i.e. GLM1) and simplified this newly formed model using stepAIC;
and we then added a few second orders based on the relationships
of species richness with relevant predictors to this model and
further simplified it using stepAIC, dropterm and anova, which led
to the third model (i.e. GLM3).

Given that the above modelling effort using GLM produced
models with poor predictive accuracy and RF was found to be able
to select useful predictors for GLM (Arthur et al., 2010), we used the
predictors in the most accurate RF model and developed the fourth
GLM model (i.e. GLM4). We developed one further model (i.e.
GLM5) by simplifying GLM4 based on stepAIC, and the sixth model
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(i.e. GLM6) by simplifying GLM5 using and dropterm and anova
respectively. We added two-way interactions and one second order
term to the most accurate GLM model so far (i.e. GLM6) and used
the stepAIC and further developed a model (i.e. GLM7). Moreover,
we only added the second order to GLM6 and simplified the model
using stepAIC, resulting in model GLM8. Finally, we considered
two-way interactions of predictors in GLM8 and developed a
further model GLM9 based on stepAIC. The details of the resultant 9
models were presented in Table 4. The model selection approaches
for GLM were summarised in Table 5.
2.7. Model validation

To evaluate the performance of the models developed using
above selection methods, a 10-fold cross-validation was used
(Hastie et al., 2009; Kohavi, 1995). To reduce the influence of
randomness associated with the 10-fold cross-validation, it was
repeated 100 times (Li, 2013a, b; Li et al., 2013). The choice of this
iteration number was based on findings in previous studies (Li,
2013b; Li et al., 2013). Relative mean absolute error (RMAE) and
relative root mean square error (RRMSE) (Li and Heap, 2011) were
used to assess the performance of the methods tested. Variance
explained by predictive models (VEcv) (Li, 2016) was used to assess
the predictive accuracy of the models. MAE, RMAE and RMSE were
also provided for readers interested.
2.8. Model comparison and spatial predictions

Since the VEcv values were either not normally distributed
based on the Shapiro-Wilk normality test, with heterogeneous
variance based on Fligner-Killeen test of homogeneity of variances,
or both, Mann-Whitney tests were used to compare the difference
in accuracy between the most accurate models developed for GLM
and RF using various model and variable selection methods and the
effects of model averaging.
Table 4
A brief summary of GLM modelling process for sponge species richness.

Model Modelling process

1 full model: - 18 predictors including long
2 full model: - 36 predictors including long
3 full model: - 40 predictors including long, þ lat:rugosity5, sand:prof_cur_o
4 As in model 43 for rf
5 model 4: - bs_entro7
6 model 5: - tpi3, bs11
7 model 6: þ lat̂ 2, long:bs_var7, long:dist.coast, long:bs34, lat:bs34, dist.coast:bs
8 model 6: - dist.coast, þ lat̂ 2
9 model 8: þ longlat, long:bs_var7, long:bs34, lat:bs34

Table 5
The selection of GLM predictive models.

Predictor Selection m

All 49 variables stepAIC
Predictors in GLM1 dropterm
Predictors in GLM1 & two-way interactions & second orders stepAIC, d
Predictors in RF43 n/a
Predictors in GLM4 stepAIC
Predictors in GLM5 dropterm
Predictors in GLM6 & two-way interactions & second order stepAIC
Predictors in GLM6 & second orders stepAIC
Predictors in GLM8 & two-way interactions stepAIC
2.9. Software and data availability

The modelling was implemented in R 3.0.2 (2013), using the
‘raster’ packages for extracting data from different data layers
(Hijmans, 2014), ‘gstat’ for geostatistical modelling (Pebesma,
2004), ‘MASS’ for generalised linear models (Venables and Ripley,
2002), and ‘randomForest’ for random forest modelling (Liaw and
Wiener, 2002). Finally, the most accurate predictive models were
used to predict SSR at each 250 m grid cell in the study areas.
Relevant maps were then produced using ArcGIS (ESRI® ArcMap
TM 10.0).

A dataset of SSR and all predictive variables at 77 sample loca-
tions was provided as a spreadsheet in Appendix B.
3. Results

3.1. Predictive model using RF, RFIDW, RFOK, RFOKRFIDW and
RFRFOKRFIDW

3.1.1. Variable selection using AVI
The RRMSE of RF, RFIDW, RFOK, RFOKRFIDWand RFRFOKRFIDW

fluctuated from model 1 to model 23 and reached a minimum
mean for model 22, especially for RFIDW with a RRMSE of 78.12%
(models 1e23 in Table 3, Fig. 2). Seven important predictors were
identified: bs_var7, bs_entro7, dist.coast, bs_o, bs34, bathy_o, and
bs11. After reaching the model (i.e., model 23) with only two pre-
dictors remaining, no further model reduction was proceeded as
these two predictors were location information and there is dra-
matic drop in RRMSE. Overall, model 22 for RFIDW was more ac-
curate than all other models. It contained three predictors (Table 3).
3.1.2. Variable selection based on KIAVI
In total, 10 models were developed for each of RF, RFIDW, RFOK,

RFOKRFIDW and RFRFOKRFIDW based on above important vari-
ables and an additional predictor: geomorphic features (geom)
(models 24e33 in Fig. 2, Table 3). RRMSE increased from model 24
to model 33, except model 32. Model 24was of a minimummean of
RRMSE, especially for RFOKRFIDW with a RRMSE of 75.99%. One
Predictors No. of predictors

2, 3, 5:8, 11:12, 15:16, 18, 20, 22:25, 27:30, 32:36, 41, 43:47 31
2, 3, 12, 15:16, 18, 20, 22, 24, 28, 29, 45, 47 13
2, 3, 12, 16, 20, 22, 23, 28, 47, 2*23, 3*18 11
1:2, 25, 48, 42, 21, 8, 6 8
1:2, 25, 48, 21, 8, 6 7
1:2, 48, 21, 8 5

34 1:2, 48, 21, 8, 2*2, 1*48, 1*21, 1*8, 2*8, 21*8 11
1:2, 48, 8, 2*2 5
1:2, 48, 8, 2*2, 1*2, 1*48, 1*8 8

ethod Selection criteria Resultant model

BIC GLM1
& anova p-value GLM2
ropterm & anova BIC & p-value GLM3

n/a GLM4
BIC GLM5

& anova p-value GLM6
BIC GLM7
BIC GLM8
BIC GLM9



Fig. 2. RRMSE (mean: black line; minimum and maximum: dash red lines) of RF models 1e46 with different predictor sets based on the averages over 100 iterations of 10-fold cross
validation for sponge species richness. The minimum mean RRMSE (red circle) for models in: a) models 1e23 (based on the AVI); b) models 24e33 (based on KIAVI); c) models
34e40 (based on KIAVI using model 24 and the AVI) and d) models 41e43 (based on KIAVI by removing the unimportant predictors identified from model 34e40) and then models
44e46 (based on KIAVI by using model 43 and the AVI). The green circle indicates the model with minimum mean RRMSE in models 1e46. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Table 6
Mean predictive errors of the most accurate models among models 1e46 for each of RF, RFIDW, RFOK, RFOKRFIDW and RFRFOKRFIDW.

Method MAE Model RMAE Model RMSE Model RRMSE Model

RF 5.8728 26 56.0406 26 7.9575 41 75.9314 41
RFOK 5.8011 42 55.3486 42 7.8684 43 75.0777 43
RFIDW 5.7301 42 54.6756 42 7.7668 44 74.1069 44
RFOKRFIDW 5.7308 42 54.6814 42 7.7599 43 74.0425 43
RFRFOKRFIDW 5.7787 42 55.137 42 7.7989 44 74.4152 44

Table 7
Mean predictive errors of themost accuratemodels amongmodels 1e3 for Boruta (with macRuns of 100 (default), 2000 and 5000) based on 49 variables for each of RF, RFIDW,
RFOK, RFOKRFIDW and RFRFOKRFIDW.

Method MAE Model RMAE Model RMSE Model RRMSE Model

RF 6.2748 2 59.8748 2 8.6110 2 82.1617 2
RFOK 5.9563 2 56.8362 2 8.4197 2 80.3391 2
RFIDW 6.1194 2 58.3879 2 8.3900 2 80.0505 2
RFOKRFIDW 5.9919 2 57.1731 2 8.3382 2 79.5620 2
RFRFOKRFIDW 6.0403 2 57.6323 2 8.3956 2 80.1027 2
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unimportant predictor, geom, was identified because its removal
reduced the predictive error.

A further seven models (i.e., models 34e40) were developed for
each of RF, RFIDW, RFOK, RFOKRFIDW and RFRFOKRFIDW based on
the most accurate model identified so far (i.e., model 24) by
excluding the unimportant variable (i.e. geom) (Fig. 2, Table 3).
There was a general trend of increasing RRMSE from model 34 and
to model 40. Model 34 had a minimum RRMSE, especially for
RFOKRFIDW with a RRMSE of 74.60%. This modelling process also
identified two unimportant predictors: bs_o and bathy_o. For
model 40, bs11 was the least important variables and removal of
bs11 would result in a model that is identical to model 32, so no
further model simplification was pursued.

Three models (i.e., models 41e43) were developed for each of
RF, RFIDW, RFOK, RFOKRFIDW and RFRFOKRFIDW based on the
most accurate model identified so far (i.e., model 34) by excluding
the unimportant variables identified above (Fig. 2, Table 3). RRMSE
decreased frommodel 41 to model 43. Model 43 was of a minimum
RRMSE, especially for RFOKRFIDW with a RRMSE of 74.04%.

Three models (i.e., models 44e46) were developed for each of
RF, RFIDW, RFOK, RFOKRFIDW and RFRFOKRFIDW based on the
variable selection approach of AVI using predictors in the most
accurate model identified so far (i.e., model 43) (Fig. 2, Table 3).
RRMSE increased from model 44 and to model 46 for RFOKRFIDW
and reached a minimummean for model 44 for RFRFOKRFIDW, but
the RRMSE of these models are higher than that of model 43 for
RFOKRFIDW. For model 46, bs34 is the least important variables
and removal of bs34would lead to amodel identical tomodel 40, so
no further model simplification was pursued.

In total, 46 models were developed for each of RF, RFIDW, RFOK,
RFOKRFIDW and RFRFOKRFIDW. Of these models and methods,
model 43 of RFOKRFIDW had the lowest RRMSE (Table 6).
Table 8
Mean predictive errors of model 47 for RF, RFIDW, RFOK, RFOKRFIDW and
RFRFOKRFIDW.

Method MAE RMAE RMSE RRMSE

RF 5.9596 56.8624 7.9926 76.2642
RFOK 5.6974 54.3599 7.8397 74.8024
RFIDW 5.7410 54.7765 7.7645 74.0868
RFOKRFIDW 5.6855 54.2473 7.7233 73.6909
RFRFOKRFIDW 5.7475 54.8344 7.7776 74.2080
3.1.3. Variable selection using boruta, rfe and VSURF
Three models (i.e., models 1e3) were developed for each of RF,

RFIDW, RFOK, RFOKRFIDW and RFRFOKRFIDW based on the vari-
able selection approach of Boruta using 49 predictors (Table 7).
Seven, 15 and 16 variables were selected respectively for these
models; and some important variables identified for model 43 like
lat, long and tpi3 were selected but some such as bs11 and/or bs34
were missed out. Of these three models, model 2 was the most
accurate for all five methods, and RFOKRFIDW was the most ac-
curate method. Since all variables were selected using rfe, the
resultant model was identical to model 1. Only three variables were
selected using VSURF, and the resultant model was identical to
model 22.

3.1.4. The transformation of the residuals of RF
The transformation of the residuals of RF for model 43 resulted

in model 47 that further reduced the predictive error with a RRMSE
of 73.69% (Table 8).

3.2. Predictive model using GLM, GLMIDW, GLMOK,
GLMOKGLMIDW and GLMGLMOKGLMIDW

For each of GLM, GLMIDW, GLMOK, GLMOKGLMIDW and
GLMGLMOKGLMIDW, 9 models were developed (Tables 4 and 9).
RRMSE values of GLM1, GLM2 and GLM3, which were based on
traditional model selection approaches for GLM, were exceptionally
high. RRMSE values of GLM4, GLM5 and GLM6, which were based
on both RF model and traditional model selection approaches for
GLM, were much lower than that of models 1 to 3 and reached the
minimum for model 6, especially for GLMGLMOKGLMIDW with a
RRMSE of 85.54%. The last three models were based on the most
accurate model so far for GLM (i.e. GLM6) and traditional model
selection approaches for GLM (Table 5) and their RRMSE values
were much higher than that of model 6. Overall, model 6 for
GLMGLMOKGLMIDW was more accurate than all other models.
This model contained five predictors (Table 4).

3.3. Comparison of the most accurate predictive methods and the
effects of model averaging

The accuracy of the most accurate predictive models for SSR
developed for GLM and RF using various model selection and var-
iable selection methods (i.e. model 1 for RFIDW (RF1), model 43 for
RFOKRFIDW (RF43), model 47 for RFOKRFIDW (RF47), model 2 for
RFOKRFIDW using Boruta (RF.Boruta2) and model 6 for
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GLMGLMOKGLMIDW (GLM6)) was summarised in Table 10 and
Fig. 3. The models developed for RF were significantly more accu-
rate than the model for GLM based on the Mann-Whitney tests
(with p values < 0.0001). Among the models for RF, the model (i.e.
RF43) based on KIAVI was significantly more accurate than the full
model (RF1) and the model based on Boruta (i.e. RF.b2) in terms of
the Mann-Whitney tests (with p values < 0.0001). Although the
transformation of RF residuals has slightly increased the accuracy
(i.e. RF47), such improvement wasmarginal in comparisonwith the
non-transformed model (i.e. RF43) in terms of the Mann-Whitney
tests (with p value ¼ 0.1818).

The effects of model averaging on the most accurate predictive
models for RF (i.e. model 47) and GLM (i.e. model 6) were sum-
marised in Table 11 and Fig. 4. It is apparent that RFOKRFIDW was
more accurate than other methods including RFRFOKRFIDW, but
the difference was not significant in comparison with RFIDW that
was also not significantly different to RFRFOKRFIDW; additionally,
hybrid methods (i.e. RFOK, RFIDW) significantly improved the ac-
curacy in comparison with RF (Table 11). For GLM, the averaged
methods were significantly more accurate than other methods and
GLMGLMOKGLMIDW was also significantly more accurate than
GLMOKGLMIDW; the hybrid methods (i.e. GLMOK, GLMIDW)
significantly improved the accuracy in comparison with GLM
(Table 11).
Table 10
Comparison of VEcv (%) of the most accurate predictive models for sponge species
richness developed for GLM and RF using various model selection methods (i.e.
model 1 for RFIDW (RF1), model 43 for RFOKRFIDW (RF43), model 47 for RFOKR-
FIDW (RF47), model 2 for RFOKRFIDW using Botura (RF.b2) and model 6 for
GLMGLMOKGLMIDW (GLM6)) based on the averages over 100 iterations of 10-fold
cross validation. The differences between these comparisons based on the Mann-
Whitney tests (n ¼ 100 for each model).

Model VEcv (%) RF1 RF43 RF47 RF.b2

RF1 32.20
RF43 44.89 0.0000
RF47 45.41 0.0000 0.1818
RF.b2 36.38 0.0000 0.0000 0.0000
GLM6 26.50 0.0000 0.0000 0.0000 0.0000

Fig. 3. The VEcv (%) of the most accurate predictive models based on the averages over
100 iterations of 10-fold cross validation for sponge species richness developed for
GLM and RF using various model selection methods.



Fig. 4. The effects of model averaging on the most accurate predictive models for RF (i.e. mod
the averages over 100 iterations of 10-fold cross validation.

Fig. 5. The fitted values vs. observed values for sponge species richness: a) models 1 and 4

Table 11
Effects of model averaging on the most accurate predictive models for RF (i.e. model
47) and GLM (i.e. model 6) for sponge species richness in terms of VEcv (%) based on
the averages over 100 iterations of 10-fold cross validation. The differences between
these comparisons based on the Mann-Whitney tests (n ¼ 100 for each model).

Model RF RFOK RFIDW RFOKRFIDW

RFOK 0.0000
RFIDW 0.0000 0.0013
RFOKRFIDW 0.0000 0.0000 0.1641
RFRFOKRFIDW 0.0000 0.0000 0.4040 0.0000

Model GLM GLMOK GLMIDW GLMOKGLMIDW

GLMOK 0.0000
GLMIDW 0.0000 0.0004
GLMOKGLMIDW 0.0000 0.0000 0.0000
GLMGLMOKGLMIDW 0.0000 0.0000 0.0000 0.0000
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3.4. Goodness of fit, model selection criteria and VEcv

Goodness of fit of models 1 and 43 (or 47) for RF andmodels 1 to
9 for GLM were depicted in Fig. 5. The goodness of fit for two RF
models were similar or the later one is even better (Fig. 5a), but the
VEcv of models 43 and 47 were significantly higher than that of
model 1 for RF (Table 10).

The goodness of fit of model 1 for GLM was the best and then
became progressively worse from models 2e6; the goodness of fit
of model 7 for GLM was slightly improved and then reduced for
model 8 and slightly improved for model 9. However, the VEcv of
models 1 to 9 for GLM displayed an opposite pattern in comparison
with the goodness of fit. That is, the VEcv increased frommodel 1 to
model 6, decreased for model 7, increased for model 8 and then
el 47) and GLM (i.e. model 6) for sponge species richness in terms of VEcv (%) based on

3 for RF, and b) models 1 to 9 for GLM.



Fig. 5. (continued).
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decreased for model 9 (Table 12).
Moreover, it was apparent that the traditionally used BIC and

deviance explained had little association with VEcv (Table 12).
Model 1 for GLM had the lowest BIC, but with lowest VEcv
(Table 12). Model 4 had the lowest deviance explained adjusted but
its predictive accuracy (i.e. VEcv) was 22.3% that was not the
highest. Model 6 was the most accurate with a VEcv of 26.5%, but
with moderately high BIC and deviance explained adjusted.
3.5. The predictions of SSR

The predictions were generated using model 47 for RFOKRFIDW
that was the most accurate predictive model. The influence of the
eight predictors in model 47 for RFOKRFIDW on the predictions on
the basis of their importance was as follows:
long > lat > dist.coast > bs11 > tpi3 > bs34 > bs_entro7 > bs_var7.
The relationships of SSR with these predictors are illustrated in
Fig. 6 and it is apparent that these relationships were non-linear.



Table 12
The BIC, deviance explained (%), deviance explained adjusted (%) and VEcv (%) of GLM models 1 to 9.

Model BIC Deviance explained (%) Deviance explained adjusted (%) VEcv (%)

1 468.63 93.16 88.45 �2.86Eþ16
2 622.86 62.91 55.26 �6.65Eþ12
3 587.78 66.35 60.65 �2.40Eþ09
4 779.10 39.75 32.66 22.30
5 776.15 39.56 33.43 24.11
6 783.27 37.51 33.11 26.50
7 702.79 51.38 43.15 �26.43
8 781.94 37.68 33.29 24.46
9 722.58 47.10 40.88 �83.40
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For example, SSR was relatively high along longitude and started to
decline after 129.5� with a dramatic decrease around 129.8�; and an
opposite pattern was observed in relation to tpi3. SSR increased
with bs34 and bs11, reached a plateau when bs34 was higher
than�24 db, and decreased when bs11was higher than�19 db and
reached a plateau when bs11 was close to �10 db, which was
equivalent to what was observed when bs11 was �21 db.

The predicted SSR was found to be high on banks and terraces
and low on plains and valleys. The predictions are illustrated in
Fig. 7 for area H in Oceanic Shoals. This area was chosen as an
example as it contains highly contrasting geomorphic features. In
this area, the influence of the first three important variables (i.e.
long, lat and dist.coast) were largely unnoticeable as the area was
small and only covered a short range of these variables (i.e.
126.9364� e 127.0022� for long, �11.3457� e �11.3126� for lat, and
264,947e268,605 m for dist.coast) and their influence was barely
noticeable over the short range (Fig. 6). The patterns of the pre-
dictions mainly reflected the local variations associated with the
rest predictors as: (1) the highest SSR was corresponding to the
high values of bs11 and bs34 on the bank (Fig. 7b and f), (2) the ring
patterns were associated with high SSR and mimicked the patterns
of tpi3 and also bs11 and bs34 (Fig. 7b and c), and 3) the blue
horizontal broken strips were associated with low SSR and re-
flected the influence of bs11, bs34, bs_entro7 and bs_var7 (Fig. 7b,
d and 7e). In general, low species richness was mostly found in the
plains and depressions with low bs values (Fig. 7f).
4. Discussion

4.1. Issues with model valuation and selection criteria for RF

The set of initial input predictors may affect the final model
selection. From models 24e33 based on RF, only the exclusion of
geom increased the predictive accuracy. That is, with the existence
of geom, a few important variables were excluded during the
modelling process, and the accuracy of all corresponding models
was reduced. This suggests that the set of initial input predictors
affects the model selected as previously observed (Li, 2013a).

The status of important and unimportant variables may change
with the sets of initial input predictors. Two predictors, bathy_o and
bs_o, were identified as unimportant for models 40 and 41, but
were identified as important variables for models 1e23. This
change suggests that unimportant variables can be identified as
important variables if some unimportant variables (i.e., prof_-
curv_o, rugosity3 and tpi3) exist. This phenomenonwas also found
in previous studies (Li, 2013a; Li et al., 2016). It was also found that
the inclusion of noisy or irrelevant predictors may reduce the
possibility of the selection of the important variables at each node
split for each individual tree and thus reduce the predictive accu-
racy (Li et al., 2011a, 2011b). This suggests that pre-selection of
predictors for RF is important for predictive modelling, although it
was argued that RF can deal with noisy predictors well (Diaz-
Uriarte and de Andres, 2006). This further suggests that AVI is not
always reliable for selecting predictors or simplifying predictive
models. This presents a challenge for selecting an optimal predic-
tive model. Repeating the selection procedure based on important
and unimportant variables by using KIAVI may help to resolve this
issue although it is time consuming. This is an area worth further
investigation in the future.

Although features selected using Boruta can improve the accu-
racy in comparison with the full model, the accuracy of resultant
model is significantly less than that of the most accuratemodel (i.e.,
model 47 for RFOKRFIDW). This finding is consistent with previous
findings (Li et al., 2016). The accuracy of the model selected using
Boruta highly depends on the choice of number of runs, i.e. max-
Runs. This may further suggest that for some datasets, more runs
are required. However, this may still lead to sub-optimal model.
Moreover, some features in the most accurate predictive model
were not included in the features selected using Boruta. That is,
some important features in terms of predictive accuracy were
missed out during its selection. This suggests that Boruta should be
usedwith caution in selecting features for predictivemodels, which
is against previous recommendation (Li et al., 2016).

Features selected from rfe were not optimal and can even be
misleading. This may be due to the fact that we do not have causal
predictors in this study, which is often the case in the environ-
mental sciences (Li, 2013b). It can be further argued that this may
be also due to the small number of predictors used in this study and
that rfe may be best used with a large number of predictors. These
findings regarding rfe may be limited to this study. This selection
method may be useful when the number of predictors or the
dimension of feature space gets large. This is largely speculative and
further studies are needed.

Features selected using VSURF were too parsimonious in com-
parison with other selection methods, but the selected features
were the important ones. Thus this method could be used to
identify a few important features but it can lead to sub-optimal
predictive models. Furthermore, we would argue that any feature
selectionmethods based on variable importance only would lead to
sub-optimal predictive models. This is because the resultant
models from such selection methods are not based on their pre-
dictive accuracy. Therefore, caution should be taken when using
them to select predictive models.

A complete search for the global optimal model(s) would
identify themost accurate predictive model for given samples but it
is time consuming and becomes impossible when the number of
predictors is large. This is because the computational requirements
have a factorial increase with the number (Li et al., 2016), high-
lighting the importance of variable selection methods as previously
discussed.



Fig. 6. Partial plot of RF model 47, indicating the relationships of sponge species richness to the eight predictors in the RF model.
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In addition, the inclusion of highly correlated predictors (i.e.
r ¼ 0.95 and r ¼ 0.95 for bs11 and bs34) could improve predictive
accuracy. This is consistent with findings regarding the applications
of RF in other studies (Li, 2013b; Li et al., 2012b, 2013, 2016). This
implies that correlated variables may be able to compensate for the
small number of predictors in environmental sciences. This
provides important guidelines for pre-selecting predictors using
correlation methods because in environmental sciences we usually
only have correlated proxy predictive variables instead of causal
predictors or drivers as seen in simulation studies (Biau, 2012; Li,
2013b).



Fig. 7. Spatial predictions of sponge species richness using model 47 for RFOKRFIDW in Oceanic Shoals area 4: a) predictions, b) bs11, c) tpi3, d) bs_entro7, e) bs_var7 and f)
geomorphic features overlaid on bathymetry. Since the spatial patterns of bs34 were similar to that of bs11, it was not presented. The blank spaces in the predictions were resulted
from the missing values in bs11.
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4.2. Issues with model valuation and selection criteria for GLM

The accuracy (i.e. VEcv) of GLM predictive model did not align
well with BIC, deviance explained (%), and deviance explained
adjusted (%). The results suggest that conventional model selection
approaches based on AIC, anova and dropterm and their combi-
nation for GLM may lead to models with the lowest BIC values,
highest deviance explained (%) and highest deviance explained
adjusted (%). These models may be the most parsimonious models,
but do not necessarily have the highest predictive accuracy. In fact,
the accuracies of the resultant models (i.e. GLM1, GLM2 and GLM3)
were the most inaccurate and unacceptably low in this study. This
finding suggests that using conventional model selection ap-
proaches was unable to identify reliable predictive models and they
should be used with care for developing predictive models,
although they are useful approaches for inferential or exploratory
analyses (Leek and Peng, 2015). Overall, this finding highlights that
selecting predictive models is highly challenging and that to select
predictive models, predictive accuracy should be used instead of
AIC or deviance explained (%) because they are misleading and
should not be used to select predictive models. This finding con-
firms that the traditional model selection methods such as AIC and
BIC for regression models (e.g. linear model, generalised linear
model) attempt to select the most parsimonious models that are
not necessarily the most accurate models, especially when proxy
variables are used as predictors instead of causal variables (Li et al.,
2016).

The most accurate GLM predictive model was built from the
predictors of the most accurate RF model, although with a further
simplification based on AIC. This finding suggests that the infor-
mation from RF model is helpful and joint application of variable
selection using RF and conventional model selection approaches for
GLM can further improve the predictive accuracy of GLM models.
This finding is consistent with previous studies (Arthur et al., 2010)
where RF was used to select important predictors for GLM and a
generalised linear mixed model. This is proven to be a useful model
selection approach for developing GLM predictive models.

The assessments of goodness of fit based on the observed values



Fig. 8. The relative root mean square error (RRMSE) of the most accurate predictive
models identified (i.e., GLM6, RF1, RF.Boruta2, RF43 and RF47: red circles) using various
model and variable selection methods and the average accuracy of predictive models
published in the environmental sciences (i.e., linear model (lm): black line, and
resistant regression (lqs): blue line) (modified from Li, 2016) in relation to coefficient
variation (CV (%)). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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and fitted values of a model are useful for statistical analysis like
inferential or exploratory (Leek and Peng, 2015). However, they are
unreliable for identifying predictive models as demonstrated by the
relationship of observed species richness and the fitted values
(Fig. 5b) and by the corresponding predictive accuracy. How the
goodness of fit relates to predictive accuracy is worthy of further
investigation. In contrast to GLM, the most accurate RF model with
8 predictors not only improved the predictive accuracy, but also
delivered a goodness of fit that was as good as the RFmodel with all
49 predictors. This may be a further advantage of RF and its hybrid
methods.

4.3. Model accuracy

Model averaging significantly improved the accuracy in com-
parison with RFOK but only marginally improved the accuracy in
comparison with RFIDW. Such disparate effects of model averaging
on the accuracy improvement have been previously observed as it
improved the accuracy (Li et al., 2012b), but showed little effect (Li
et al., 2011a, 2011b) or even negative effects (Li, 2013a). The
possible reasons for such marginal or negative effects by model
averaging have been discussed in depth (Li, 2013a). In comparison
to RF, model averaging have significantly improved the accuracy for
GLM and its hybrids, which is consistent with findings for other
modelling methods (Goswami and O'Connor, 2007; Marmion et al.,
2009; Raftery et al., 2005). These findings may imply that the ef-
fects of model averaging are method dependent or even data
dependent.

It is apparent that the hybrid methods can significantly improve
predictive accuracy in comparison with RF (Table 11). This is sup-
ported by many previous studies (Li, 2013b; Li et al., 2011c;
Sanabria et al., 2013b), although the opposite was observed for
RFIDW (Li, 2013a). As for GLM, it was the first time such compari-
sons have beenmade between GLMwith GLMOK and GLMIDW. The
latter is a newly developed hybrid method in this study. Although
GLMOK was compared with other methods in previous studies (Li
et al., 2011b, 2011c, 2010b), this is the first time it was applied to
count data. Evidently the hybrid methods have significantly
improved the accuracy in comparison with the GLM model.
Furthermore, the hybrid methods of RF and geostatistical methods
are considerably more accurate than the hybrid methods of GLM
and geostatistical methods. This finding confirms that hybrid
methods of RF and geostatistical methods can effectively model
count data and are not data-type specific, further demonstrating
the potential of the methods for making spatial predictions.
Although the hybrid methods were developed and applied to ma-
rine sediment data since 2008 with proven high predictive accu-
racy (Li et al., 2010b, 2011a, b, 2012b), their applications to other
data type or terrestrial data are still rare (Sanabria et al., 2013b;
Tadi�c et al., 2015). These methods are recommended for further
testing using relevant data types for spatial predictions in the
future.

The prediction accuracy (VEcv) of the most accurate model (i.e.
model 47 for RFOKRFIDW) is 45.41% and its RRMSE is 73.69%, which
is higher than the average accuracy of predictive models published
in the environmental sciences (Fig. 8) (Li, 2016; Li and Heap, 2008;
Li et al., 2012b). It is worth mentioning that the predictors used in
this study are proxies, but they are usually causal variables or
drivers in simulated studies (Biau, 2012) and most likely causal
variables or drivers for studies in the terrestrial environmental
sciences (Austin et al., 2006; Sanabria et al., 2013b). This further
demonstrates the capacity of the hybrid methods. The high per-
formance of the hybrid methods could be attributed to features of
RF (Li, 2013a; Li et al., 2011b; Li et al., 2011c) and the ability to deal
with local variation by geostatistical component in the hybrid
methods. This demonstrates an advantage of the hybrid methods.
On one hand, they can effectively deal with the global trend either
spatially, environmentally or both and with non-linear relation-
ships with predictors, and on the other hand, they can deal with
local variations if the residuals contain useful information of local
variation.

Finally, the predictive models using proxy predictors may pro-
vide useful clues for identifying causal variables. Using proxy pre-
dictors in predictive models developed using RF can lead to highly
accurate predictive models. These models however are often
referred to as ‘black box’ in the respect that they are unable to
directly inform how the dependent variable is related to causal
variables or drivers. The model depicts the relationship of the
dependent variable with the proxy predictors as shown in this
study, which may be able to shed some light on where we should
look for the possible causal variables. This is because the predictors
that remained in the model may be good surrogates of the causal
variables, which may help to narrow the scope where we can start
to find the casual variables and provide insight about the depen-
dent variable on how and why it displayed the observed patterns.
Professional knowledge can then play a significant role in searching
for the causal variables based on the proxy predictors used in the
predictive model. This can then lead to the discovery of reliable
information for management. For example, we may use the iden-
tified relationships of SSR with the proxy predictors in this study to
narrow the scope of possible causal variables based on expert
knowledge if we can explain ecologically why such a relationship
was observed. Therefore, an accurate predictive model can not only
produce reliable spatial predictions, but also provide clues for
identifying causal variables.

4.4. Predictions of species richness

SSR was generally high in the region west of 129.8� and north
of �12.7 and further from coastline (Fig. 7), supporting previous
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research in which sponge diversity and community structure were
linked to distance offshore (Sorokin et al., 2007; Wilkinson and
Cheshire, 1989). The SSR was generally higher when bs variables
were higher although non-linearly. The higher bs is, the harder the
seabed substrates. This implies that hard seabed substrates provide
habitats for sponge species and support high SSR. This finding is
supported by previous studies (Beaman et al., 2005; Fromont et al.,
2012) as well as by those conducted in the same region
(Przeslawski et al., 2014, 2015). The relationships of SSR with the
predictors are non-linear in this study, which explains why no
(Przeslawski et al., 2015) or only marginally significant relationship
(Przeslawski et al., 2014) could be found when a linear relationship
was assumed. The nonlinear relationships were expected because
many factors contribute to such relationships such as interactions
of limiting resources and competition (Austin, 1987; Austin et al.,
2006; Huston, 2002). The predictions also depend on the length
of environmental gradient captured by samples (Li et al., 2009),
which explains why GLM models performed poorly in this study.
This can be further explained as that samples used as training for
cross-validation may cover a short gradient and thus lead to
abnormally high or low predictions for validation samples. The
relationship of SSR with latitude was also apparent for many spe-
cies including sponge in terms of their abundance in a previous
study (Smale et al., 2010). In addition, the bathymetry was found
not an important predictor of SSR, which is consistent with that
Australian sponge communities have shown no relationship to
water depth (Sch€onberg and Fromont, 2011), although not consis-
tent with previous observations by Wilkinson and Cheshire (1989)
and Sorokin et al. (2007). These findings largely delineate the re-
gion where habitats of sponge species are likely to be found,
providing important information for future field validation and
monitoring design and highlighting areas where management and
conservation of sponge gardens should be focused. Furthermore,
our findings should be considered in conjunction with results of
species assemblages or functional groups (Cadotte et al., 2011), as
well as temporal variability (Piacenza et al., 2015), to provide reli-
able information for the management and conservation of sponge
gardens.

4.5. Limitations

Many modelling strategies and predictive approaches for spatial
predictions of species richness have been reviewed (D'Amen et al.,
2015). Of these, only the assembly first and predict later strategy
and correlative macro-ecological models are applicable to this
study. The spatial predictions generated in this studywere based on
modelling techniques using proxy environmental predictors not
necessarily based on solid biological foundations. That is, these
predictors were proxies that were not necessarily the causal vari-
ables or drivers. Despite this, the modelling approaches could be
largely regarded as correlative macro-ecological models and thus
may share all limitations associated with suchmodels as detailed in
D'Amen et al. (2015). These limitations may include the difficulty of
inferring causality from observed patterns, the loss of species'
identities, and the problematic assumption of stationarity through
space and time. All these limitations should be considered in
forming decisions for the management and conservation of the
sponge gardens modelled in this study.

In addition, the randomForest function is known for its variable
importance measure exhibiting bias towards correlated variables,
continuous variables, and variables with many categories (Strobl
et al., 2007, 2008). Of these issues, the correlation issue is the
major concern because some of the 49 numerical variables used are
highly correlated. The ‘extendedForest’ (Smith et al., 2011), which
was developed based on Strobl et al. (2008), was used to address
the correlation related issue. The only categorical predictor was
considered in the middle of the modelling process and was not
selected in the final predictive model. Furthermore, the final se-
lection of a predictor was based on its contribution to predictive
accuracy instead of its variable importance. So the effects of any
bias in variable importance caused by relevant issues on the se-
lection of final predictive model should be minimal in this study.
5. Conclusions

This is the first application of the hybrid methods of RF with OK
and IDW, and GLMwith OK and IDWand their averagedmethods to
count data. Initial input predictors should be pre-selected to
minimise their impact on model and variable selection and on the
status of important and unimportant variables in future studies.
Joint application of KIAVI and cross-validation, where the features
were selected based on variable importance and more importantly
on the predictive accuracy of the resultant predictive model, is
recommended for selecting RF predictive models in the future.
Selecting an optimal RF predictive model is challenging and worthy
of further investigation. The conventional model selection ap-
proaches based on both AIC, anova and dropterm and their com-
bination should be used with care for developing GLM predictive
models; AIC or deviance explained (%) should not be used to select
GLM predictive models. Joint application of variable selection using
RF and conventional model selection approaches for GLM is proven
to be useful for selecting GLM predictive models. Criteria for
assessing the goodness of fit are unreliable for selecting predictive
models and should not be used to select GLM predictive models.
The effects of model averaging aremethod dependent or even data-
dependent. The hybrid methods of RF and geostatistical methods
can effectivelymodel count data and are not data-type specific; and
they can effectively deal with the global trend either spatially,
environmentally or both and with non-linear relationships with
predictors, and with local variations if the residuals contain useful
information of local variation. They are recommended for further
testing using relevant data types for spatial predictions in the
future. Moreover, an accurate predictive model based on proxy
predictors can not only produce reliable spatial predictions, but also
provide clues for identifying causal variables. Finally, the relation-
ships of SSR with the predictors are non-linear and the habitats of
sponge species are delineated for future monitoring design, man-
agement and conservation of sponge gardens in the study region.
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