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Abstract  28 

Biological invasions are one of the most significant threats to marine biodiversity, and can be 29 

facilitated and amplified by climate change. Among all aspects of invasion biology, biotic interactions 30 

between invaders and native species are of particular importance. They strongly influence the 31 

invasion velocity as well as species responses to climate-induced stressors. Yet the effects of biotic 32 

interactions and other important demographic processes remain overlooked among most studies of 33 

climate-mediated invasions. We critically assessed current modelling techniques for forecasting 34 

marine invasions under climate change, with a particular focus on their ability to account for 35 

important biotic interactions and demographic processes. We show that coupled range dynamics 36 

models currently represent the most comprehensive and promising approach for modelling and 37 

managing marine invasions under climate change. We show, using the crown-of-thorns seastar 38 

(Acanthaster planci), why model architectures that account for biotic interactions and demographic 39 

and spatial processes (and their interaction) are required to provide ecologically realistic predictions 40 

of the distribution and abundance of invader species, both under present-day conditions and into the 41 

future. We suggest potential solutions to inform data-poor situations, such as Bayesian parameter 42 

estimation and meta-analysis, and identify strategic and targeted gaps in marine invasion research.  43 

 44 

1. Introduction 45 

Marine invasive species are a major threat to biodiversity worldwide and can have profound 46 

ecological and economic impacts on marine ecosystems (Bax et al., 2003). Although the criteria that 47 

categorise a species as invasive remain somewhat controversial, invaders are commonly 48 

characterised as species that undergo rapid increases in abundance and/or spatial occupancy with 49 

adverse effects on recipient ecosystems (Valery et al., 2008). This definition includes the case of 50 

‘native invaders’ that can spread within their historical range by exploiting niche opportunities 51 

resulting from human activities and/or loss of other species: by attaining extreme abundances and 52 

exerting severe per-capita effects on local communities, native invaders can indeed cause ecological 53 
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impacts that rival those of non-native invaders (Valery et al., 2009; Carey et al., 2012). Whether 54 

native or not, invaders can impact recipient communities directly through competition, predation, 55 

and hybridization, and indirectly by modifying habitats and potentially disrupting their suitability. 56 

Over 1500 species have invaded locations throughout the world's oceans, and more are discovered 57 

every year (European Environment Agency, 2012). The potential economic costs incurred by even a 58 

single marine invasive species can reach US$250 million yr-1 (Williams & Grosholz, 2008) and 59 

eradication seems possible only in highly constrained situations (Bax et al., 2002). Future climate 60 

change is predicted to increase the introduction and spread of invasive species, accelerating marine 61 

invasions and resulting in widespread biodiversity loss (Garcia Molinos et al., 2016).  62 

The ecological traits that commonly characterize marine invasive species are 63 

disproportionately favoured under climate change, potentially exacerbating future impacts of marine 64 

invasions (Poloczanska et al., 2013). This is because marine invaders often tend to be generalist 65 

and/or opportunists with relatively plastic life histories (Clavel et al., 2011), making them able to 66 

better adapt to rapidly changing environmental conditions and fare better in warming waters than 67 

native species (Sorte et al., 2013; Bates et al., 2013). By relaxing some of the physiological constraints 68 

on temperature-dependent growth and survival while also altering connectivity, human-induced 69 

climate change has already enabled some non-native invasive species to expand into regions where 70 

they previously could not survive and reproduce, as exemplified by the green ‘killer’ algae Caulerpa 71 

taxifolia in the Mediterranean (Walther et al., 2009). Additional climate-related factors that might 72 

enhance a species’ invasive ability include: extensions of spawning periods and increases in per 73 

capita reproductive output (Walther et al., 2009); altered timing of recruitment and faster growth in 74 

warmer years (Stachowicz et al., 2002); faster developmental rates (Walther et al., 2009); and 75 

modified local dispersal patterns due to altered hydrodynamic conditions (Diez et al., 2012). In the 76 

case of native invaders, climate-driven environmental changes at local scales (e.g. eutrophication, 77 

altered connectivity due to changes in ocean currents) can favour the dominance of invaders in parts 78 

of their historical range where they previously could not survive or reproduce (Carey et al., 2012).  79 
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Despite these established physiological and demographic responses to climate change, there 80 

have been few attempts to forecast the potential impact of invasive species under climate change 81 

and test the efficacy of alternative management actions (Sorte, 2014). Most existing knowledge is 82 

based on local field observations or mesocosm experiments (e.g., Cockrell & Sorte, 2013) that are 83 

often conducted at small scales and/or do not necessarily represent realistic environmental 84 

conditions. More integrated approaches that combine empirical data on local and regional ecological 85 

processes with simulation models are urgently needed in marine invasion biology to improve our 86 

knowledge of impending invasions and to manage existing and future invasive species (Fordham, 87 

2015). 88 

 A commonly overlooked consequence of climate change affecting marine invasions is the 89 

way climate change alters ecological interactions in native  communities (Sorte et al., 2010). Climate-90 

driven changes in invasive ability affect the way native communities are organised, facilitating the 91 

formation of novel ecological communities characterised by new arrangements and ecological 92 

interactions (Lurgi et al., 2012). Such new configurations can create ecological vacuums that facilitate 93 

future invasions, especially if top predators are depleted (as frequently reported in response to 94 

global change; Cheung et al., 2015). Other anthropogenic stressors such as fisheries exploitation, 95 

terrestrial runoff, and eutrophication can act in synergy with climate change to facilitate not only 96 

invasions by alien species but also state-shifts of species dominance, as for example, in the case of 97 

invasive jellyfish (gelatinous plankton; Fig. 1) (Licandro et al., 2010; Lynam et al., 2011). These 98 

interactions can be complex, with climate change and other anthropogenic stressors having both 99 

direct and indirect effects on the strength of biotic interactions (e.g. competition, predation). 100 

Consequently, not only is the dominance of invasive species likely to change owing to synergies 101 

between anthropogenic stressors, but also the number and strength of their biotic interactions 102 

between invasive and other species, with potentially multiplying effects brought about by trophic 103 

cascades (Lynam et al., 2011).  104 
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Anticipating and managing future threats from invasive species to marine biodiversity thus 105 

requires accurate forecasts of marine invasions that account for biotic interactions between native 106 

and invasive species, and how they are likely to change in response to multiple anthropogenic 107 

stressors. Here we appraise the quantitative methods that have been applied to forecast marine 108 

invasions, focusing on their strengths and shortcomings, and on whether they can explicitly account 109 

for biotic interactions. We then implement a spatially explicit simulation model as a proof-of-concept 110 

of how biotic interactions, demographic processes and their climate-induced variation can and 111 

should be integrated into forecasts of marine invasions under climate change. Our model organism is 112 

Acanthaster planci, the crown-of-thorns seastar, which is a major threat to the Great Barrier Reef, 113 

and the only threatening process of contemporary global change that is amenable to direct 114 

management actions (De'Ath et al., 2012). Rapid outbreaks of A. planci currently pose one of the 115 

most serious management problems for the Great Barrier Reef, leading to conservation implications 116 

(e.g., extirpation of foundation species and destruction of essential fish habitats) that are similar to 117 

those of any non-native invasive species. 118 

 119 

2. Recent developments for forecasting marine invasions under climate change  120 

2.1 Species distribution models  121 

Correlative species distribution models (SDMs; i.e. ecological niche, bioclimatic envelope, or habitat 122 

suitability models) describe or predict the probability of presence or spatial abundance of a species 123 

across environmental gradients or in a specific geographical area based on habitat suitability 124 

(Pearman et al., 2008). SDMs have very simple data requirements, needing only point location data 125 

and associated environmental variables (Table 1). However, predictions are often constrained by 126 

important limiting assumptions (Elith et al., 2010; Robinson et al., 2011). Indeed, SDMs typically 127 

assume that species occurrences represent the range of environmental conditions in which an 128 

organism can persist (Schurr et al., 2012) and rarely account for demographic processes such as 129 

dispersal in an ecologically realistic way (Travis et al., 2013). These assumptions are particularly 130 
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concerning in the case of recently introduced invasive species because their ranges are by definition 131 

expanding (e.g., Kearney et al., 2008), thus representing a non-equilibrium distribution (Thuiller et 132 

al., 2005). As a result, models calibrated in the native range often underperform in the exotic range 133 

(and vice versa) (Fitzpatrick et al., 2007), an issue that can be partially addressed by considering the 134 

species’ global range (Mainali et al., 2015). 135 

The failure of SDMs to account explicitly for biotic interactions (as well as demographic 136 

processes) has been identified as a major limitation of these models, affecting predictions of 137 

distributional shifts under changing climatic conditions (Araujo & Luoto, 2007). While biotic 138 

interactions can keep a species in check in climatically suitable conditions, they can also fail to 139 

restrict invasions in new territories where a predator or competitor is absent or in low abundance 140 

(Fig. 1) (Mainali et al., 2015). In such a situation, SDMs unrealistically consider the invaded range as 141 

climactically broader than the native range (e.g., Fitzpatrick et al., 2007). Recognition of these 142 

limitations has prompted the development of new methods for incorporating biotic interactions into 143 

SDMs (Kissling et al., 2012). These methods include: (i) adding the occurrence of an interacting 144 

species as an additional covariate in the SDMs (Araujo & Luoto, 2007); (ii) developing a separate SDM 145 

for the interacting species and using it to constrain the distribution of the focal species, minimizing 146 

the issues of false absences and collinearity where both species are related to the same 147 

environmental predictors (Schweiger et al., 2008); or (iii) calibrating an interaction matrix among 148 

species to define the error matrix for multivariate logistic regression models (Kissling et al., 2012).  149 

Existing methods for incorporating biotic interactions into SDMs remain problematic for at 150 

least two reasons: biotic interactions can change over time (even more so in the context of an 151 

invasive species under climate change; Fig. 1) and it is difficult to include more than one interaction 152 

at a time. Therefore, biotic interactions remain absent from most SDMs under the assumption that, 153 

at least at biogeographic scales (as opposed to local; Wisz et al., 2013), biotic interactions are not a 154 

determinant of invasive species distributions (Mainali et al., 2015), which seems unrealistic in most 155 

situations (Araujo & Luoto, 2007).  Recent studies using SDMs to forecast marine invasions have 156 
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focused primarily on the susceptibility of environments to invasions for management purposes (de 157 

Rivera et al., 2011; Jones et al., 2013). Biotic interactions have, however, been consistently ignored in 158 

these marine SDMs (Robinson et al., 2011).  159 

 160 

2.2 Biophysical models 161 

Biophysical models (i.e. process-based models) rely on species physiological tolerance limits and, in 162 

doing so, enable species distributions to be modelled across environmental gradients without using 163 

occurrence data (Kearney et al., 2008) (Table 1). Biophysical models should, in theory, yield more 164 

robust forecasts of climate-driven distributional shifts because they explicitly account for 165 

relationships between climate conditions and organismal performance. In doing so, biophysical 166 

models overcome problems associated with non-equilibrium situations, since they do not rely on 167 

occurrence data that could misrepresent the species’ potential range due to biotic interactions (see 168 

above) or human-driven impacts such as depletion from harvesting (Buckley et al., 2010). Biophysical 169 

models are increasingly used to model range dynamics in response to climate change (Kearney et al., 170 

2008; Cheung et al., 2011) or environmental gradients (Monahan, 2009), and can be coupled with 171 

SDMs to constrain their predictions (Elith et al., 2010; Buckley et al., 2011; Fordham et al., 2013b). 172 

For example, biophysical models have been used to show that invasion of the Indo Pacific lionfish 173 

(Pterois volitans) into the Mediterranean is unlikely to occur due to low connectivity between 174 

suitable sites (Johnston & Purkis, 2014). Biophysical models subsequently allowed to recreate the 175 

success/failure of invasions of introduced fish in the Hawaiian Islands, providing insight into the 176 

demographic properties that predispose fish species to successful invasion (Johnston & Purkis, 2016). 177 

Biotic interactions cannot currently be implemented in biophysical models in their original form but 178 

would represent an important and desirable extension to this class of models (Buckley et al., 2010;  179 

but see Tingley et al., 2014).  180 

 181 

2.3 Spatially explicit demographic models 182 
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Spatially explicit demographic models, which directly account for species vital rates in model 183 

predictions, are used with increasing frequency to model the effects of climate change on the range 184 

dynamics and persistence of species, including those in the marine realm (e.g., Fordham et al., 185 

2013b). While incorporating important information on habitat suitability (e.g., Mellin et al., 2012), 186 

such models relax some of the limiting assumptions constraining SDMs since they explicitly account 187 

for dispersal and source-sink dynamics, enabling demographic rates (such as growth or fertility) to 188 

vary in space and time (Dunstan & Bax, 2007). Models can be either population-based (i.e. they 189 

account for population-level parameters such as survival and fertility rates, dispersal kernels) or 190 

individual-based (e.g. incorporating individual heterogeneity in parameters such as body size, 191 

movement and feeding behaviour, phenotype). For both population- and individual-based 192 

demographic models, user-friendly and fully customisable modelling platforms are now broadly 193 

available (Lurgi et al., 2015) (Table 1). Most recently, some of these frameworks have been adapted 194 

to explicitly account for simple (one-way) biotic interactions in predictions of how climate change is 195 

likely to affect species range dynamics (e.g., Fordham et al., 2013a). 196 

In spite of readily available modelling platforms, and available demographic data for some 197 

species, marine applications of spatially explicit demographic models for invasive species remain 198 

scarce. Demographic (stage-structured) models have for example been used to predict the future 199 

population growth of invasive species using laboratory mesocosms to estimate survival, growth, and 200 

fecundity rates within epibenthic communities under present-day conditions and with ocean 201 

warming (Cockrell & Sorte, 2013). This approach is informative in situations where the population 202 

dynamics of local communities are explained mainly by intrinsic demographic properties of the 203 

constituent species. Demographic models have also been used to understand how range dynamics 204 

can be affected by environmental changes and to forecast potential effects on abundance and 205 

geographic distributions. For example, commercial fisheries researchers now use hybrid 206 

demographic models (named Dynamic Bioclimate Envelope Model), which explicitly account for 207 

demographic and range dynamics (Cheung et al., 2009; Cheung et al., 2011), to incorporate 208 
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competition for resources into predictions of species distributional shifts (Fernandes et al., 2013). 209 

Forecast latitudinal shifts decreased by 20% when species interactions were considered, further 210 

highlighting the importance of biotic interactions in forecasting distributional shifts and marine 211 

invasions. 212 

In aggregate, if we are to better forecast marine biological invasions and understand their 213 

effects on recipient communities, there needs to be a much stronger focus on developing 214 

quantitative approaches that account for key ecological processes (demography and biotic 215 

interactions) in simulation models of marine invasions. Coupled range dynamics models, accounting 216 

for metapopulation processes and simulating the mutually reinforcing effects of climate change and 217 

biotic interactions (Fig. 1), provide appropriate modelling frameworks that have not yet been used  218 

to simulate marine invasions. This is despite the necessary tools being widely accessible, and similar 219 

methodologies having been developed for modelling species range dynamics under climate change in 220 

terrestrial ecosystems (both aspects reviewed by Lurgi et al., 2015) including invasive terrestrial 221 

species (Fordham et al., 2012) and harvested marine species (Fordham et al., 2013b). The 222 

demonstrated utility of this approach indicates the immediate need for an assessment of its 223 

transferability to the case of marine invasions. 224 

 225 

3. Incorporating biotic interactions into forecasts of marine invasions 226 

To demonstrate the feasibility of coupling demographic models with SDMs (i.e. coupled range 227 

dynamics models) in order to forecast spatially explicit changes in the range and abundance of 228 

marine invasive species, we developed a population-based cellular automaton (Durrett & Levin, 229 

1994). We use this coupled range dynamics model to show (i) how biotic interactions can be 230 

incorporated into forecasts of invasion dynamics under climate change and (ii) the extent to which 231 

doing so influences model outcomes and potential management applications (Box 1; see 232 

Supplementary Material SM1 for a full description of the framework). We chose the coral-eating 233 

crown-of-thorns seastar (A. planci) as a model organism.  Outbreaks of A. planci have been a major 234 
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contributor to the loss of half of the coral cover on Australia’s Great Barrier Reef since 1985 (De'Ath 235 

et al., 2012). It was suggested that the frequency of such outbreaks has increased over the last 236 

century, partly as a result of increasing terrestrial runoff and primary productivity that promotes 237 

larval survival (Fabricius et al., 2010). Since A. planci can become sporadically hyperabundant in its 238 

native range, threatening the regional persistence of many corals and causing as much ecological 239 

damage as any non-native invasive species, it makes an interesting ‘proof-of-concept’ case study for 240 

modelling (and managing) marine invasions under climate change.   241 

We considered two different model-based scenarios: a trophic interaction between A. planci 242 

and its coral prey (Scenario I) vs. no biotic interactions (Scenario II). We then developed three 243 

artificial seascapes reflecting increasing levels of habitat clustering (from evenly distributed to highly 244 

aggregated suitable habitat) to gauge the potential effect of patch structure (and corresponding 245 

connectivity) on the population dynamics and distribution of A. planci. Climate change was simulated 246 

based on a latitudinal change in potential climate suitability, with the southernmost habitats 247 

becoming more suitable and northernmost habitats becoming less so over the 100-year time period 248 

considered (Lamare et al., 2014). Finally, we accounted for demographic traits and processes 249 

including fertility, dispersal, population growth, and density-dependent survival (e.g., accounting for 250 

the fact that individuals die and populations are reduced to non-outbreaking sizes once they reach a 251 

critical density threshold; Pratchett, 2005) (Box 1 and Supplementary Material). 252 

Ecologically realistic fluctuations in total population size mirrored the outbreaking dynamics 253 

observed on the Great Barrier Reef (Fabricius et al., 2010) only when biotic interactions were 254 

explicitly modelled (Scenario I; Fig. 2A). Occupancy patterns were characterised by temporal 255 

fluctuations that reflected lagged changes in the spatial distribution of prey abundance (Fig. 2A 256 

bottom panel). In contrast, in the scenario without biotic interactions (Scenario II), we show a steady 257 

decline in the total occupied range area and total population abundance of the invasive species over 258 

time (Fig. 2B). The effects of habitat clustering were more pronounced when no biotic interactions 259 

were considered (differences among rows in Fig. 2B). More clustered aggregations of suitable habitat 260 
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generated smoother changes in population dynamics as habitat suitability shifted in response to 261 

climate change. The mechanism behind this is a greater connectivity among local populations within 262 

highly clustered habitats, which facilitates synchronisation among populations, homogenising the 263 

response to climate change. In Scenario I, this greater level of connectivity in highly clustered 264 

habitats also caused higher outbreak population sizes of A. planci. Moreover, climate change only 265 

affected occupancy patterns in Scenario I, with the average spatial extent an outbreak (i.e. number of 266 

occupied cells at each peak) decreasing over the 100 year period (Fig. 2A bottom panel). Conversely, 267 

there was no evidence of decrease in the size of the outbreaking population over time (Fig. 2A top 268 

panel). 269 

 270 

4. Forecasting and managing marine invasions under climate change 271 

Previous research has started to unravel the importance of accounting for population dynamics when 272 

trying to forecast range shifts and changes in abundance (Keith et al., 2008; Fordham et al., 2013b). A 273 

more recent, critical consideration is how to incorporate intra- and inter-specific biotic interactions 274 

into forecasts of future trends in abundance and geographical range limits under climate change 275 

(Figure 1). Such biotic interactions can strongly influence the effect of climate change on marine 276 

invasions, sometimes even reversing the direction of species-specific responses to a particular 277 

stressor (when a species is affected by a stressor only in the presence or absence of another species) 278 

(e.g., Teng & Apperson, 2000). If we are to fully understand and better forecast marine invasions, we 279 

need coupled range dynamics models that are able to incorporate the most relevant aspects of 280 

species-level biology and ecology, along with their major interactions. Our coupled range dynamics 281 

model for A. planci builds upon recent and flexible platforms for modelling single-species invasions 282 

(e.g., Savage & Renton, 2014), providing a proof-of-concept that, for this simple system, direct biotic 283 

interactions can be integrated into forecasts of marine invasions under climate change with relative 284 

ease. Notably, our “proof-of-concept” modelling exercise demonstrates that accounting for simple 285 

prey-predator interactions strongly influences forecasts of range movement and population 286 
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abundance; and that real-world population trends (i.e., those observed on the Great Barrier Reef) 287 

can only be reproduced using simulations that account explicitly for biotic interactions. Our findings 288 

highlight the importance of identifying the most important sources of environmental and biotic 289 

interactions and then integrating them with an appropriately scaled spatially explicit demographic 290 

model to forecast invasions under climate change.  291 

Our modelling framework provides a generic tool that can readily be applied to any other 292 

marine pest (see Python code in Supplementary Material) where data is available for model 293 

parameterisation. Its flexibility allows to incorporate variable biotic interactions under climate 294 

change, as well as the impact of thermal or other stress on demographic rates (e.g., decreased 295 

fertility; Fordham et al., 2013b). Nonetheless, we suggest that only the most pertinent biotic 296 

interactions should be included, based on expert knowledge, published literature, meta-analysis or 297 

experimentation. This is because not all aspects of ecosystems can or should be accounted for in 298 

model projections since doing so will result in over-parametrized models that are computationally 299 

unwieldy and difficult to validate or duplicate (Grimm et al., 2005; Fulton et al., 2015). Finally, it is 300 

worth noting that the specificities and constraints particular to the model we developed for A. planci 301 

can be easily relaxed to capture different processes and mechanisms affecting corals, such as 302 

bleaching and cyclones. Including recent data-driven observations of coral impact and recovery 303 

following disturbance (Mellin et al., 2016) in the model is a key next step forward.  304 

Arguably, tight integration of the ecological processes considered above into a comprehensive 305 

modelling framework for marine invasions can be dauntingly complex and prohibitively challenging, 306 

partly because of the difficulties in collecting the data needed to parameterise such models. 307 

However, there are solutions. Plausible parameter estimation can be achieved using approximate 308 

Bayesian computation (Beaumont, 2010) or the elicitation of expert knowledge (Martin et al., 2005). 309 

Model parameters can then be calibrated by comparing model predictions with independent 310 

observations (Wells et al., 2015). Indeed, not all model parameters will have a significant effect on 311 

model outcomes, and sensitivity analysis (McCarthy et al., 1995) can help determine where future 312 
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research efforts should be focused to improve model parameters and subsequent predictions. In the 313 

case of A. planci for example, our sensitivity analysis showed that natural mortality rate was the most 314 

important determinant of population size and occupancy (Suppplementary Material). Since natural 315 

mortality is typically difficult to quantify (Pratchett et al., 2014), estimates are somewhat uncertain 316 

and future research efforts should therefore focus on improving such estimates of mortality. Second, 317 

while it is crucial to consider stressors other than temperature and the potential interactions among 318 

them, there remain significant gaps in our understanding of responses to such stressors, as well as 319 

how species-specific responses will propagate at the community level (Sorte, 2014). This is where 320 

meta-analyses can provide invaluable sources of information on how an organism might respond to a 321 

given stressor based on the taxon, life stage, habitat, and potential interactions with other stressors 322 

(e.g., Przeslawski et al., 2015). Meta-analyses can also help define the strength and direction of 323 

interactions among stressors in an integrative model, irrespective of divergences in defining the type 324 

of interactions considered (i.e. synergistic, antagonistic, and additive effects) (Piggott et al., 2015).  325 

Two critical post-hoc steps will determine the successful uptake of model outcomes by 326 

stakeholders, namely (i) model validation and (ii) quantification of uncertainty through each step of 327 

the model. Demographic models are typically validated by hindcasting abundance over the period for 328 

which independent observations are available, and comparing model predictions with observations 329 

(Wells et al., 2015). Ideally, in the most data-rich situations, validation can also be done using genetic 330 

estimates of population relatedness and source-sink dynamics (Fordham et al., 2014). Uncertainty on 331 

the other hand, is a neglected issue that can be complex to address. Attempts have been made to 332 

quantify data-related (observational or aleatory) vs. model-based (epistemic) uncertainty (Fordham 333 

et al., 2013c), and software developed to allow uncertainty in model parameters (and their 334 

interactions) to propagate through to model outputs and influence decision-making (Fordham et al., 335 

2016).  336 

The framework described here can and should be used to examine and rank the efficacy of 337 

alternative control strategies (in space and time) including: actively removing the invader; altering 338 
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habitat suitability (e.g., through predator protection in no-take areas); and managing key dispersal 339 

corridors for the invasive species or its predators. The approach can also be used address whether 340 

management effort should focus on controlling the centre (source) of a population or the spreading 341 

periphery (Williams & Grosholz, 2008) under climate change. Due to epistemic uncertainty, forecasts 342 

of any invasion should be considered with caution, and it will often be more desirable to focus on 343 

differences among scenarios rather than on specific forecasts per se. In this way, the benefit of a 344 

particular management action should be measured against its counterfactual, i.e. what would 345 

happen if resources were spent on an alternative control option (Wilson et al., 2006), to provide a 346 

more sound basis for decision making than individual forecasting. 347 

 348 

5. Conclusion 349 

During recent decades, invaluable knowledge has been gained about the mechanisms and 350 

consequences of biological invasions in warming oceans, and there is now a need to shift attention 351 

from the properties of invading organisms to forecasting invasions in a changing world. Our 352 

methodology begins this task by building on previous modelling efforts to incorporate range 353 

dynamics, demography, and biotic interactions. Importantly, methodologies exist to tackle data 354 

limitation issues (e.g. Bayesian parameter estimation, meta-analysis, expert elicitation), making 355 

demographic model development tractable as part of an adaptive learning process. We suggest that 356 

strategic pathways should be developed to inform model inputs, interactions among stressors and 357 

their inherent uncertainty- the successful integration of which will determine model uptake and 358 

benefits in terms of conservation. Finally we emphasize the importance of validating model 359 

predictions and interpreting model results in a way that reduces the effects of epistemic uncertainty.  360 
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Table 1: Modelling techniques currently available for forecasting marine invasions under climate 567 

change: data requirements, ecological processes captured, and examples of previous applications. 568 
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(de Rivera et al., 2011) 
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(Fordham et al., 2013b) 
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(Dunstan & Bax, 2007) 
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Box 1: Simulation model 572 

 573 

 574 

Box 1 Figure 1: conceptual representation of the population model. Habitat suitability across the seascape 575 

(layers) ranges from low (green) to high (pink). White cells are unsuitable and occupied cells are shown in black. 576 

 577 

We constructed a population-based cellular automaton (Durrett & Levin, 1994) model for the crown-of-thorns 578 

seastar (Acantaster planci) that simulated population and range dynamics under climate change according to 579 

two scenarios: dispersal + population growth + biotic interactions (Scenario I) and dispersal + population 580 
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growth (Scenario II). Essential aspects of the model can be summarised as follows (see Supplementary Material 581 

for full model description and implementation details): 582 

 Habitat suitability: defined based on 2D simulated seascapes characterized by variable levels of clustering 583 

(i.e. aggregation) from numerous small patches (cluster 1) to a few large patches (cluster 3). The 584 

distribution of habitat suitability values across grid cells was kept constant among clustering levels. The 585 

resulting maps carry information on habitat suitability, which in turn determines the carrying capacity.  586 

 Simulating the effects of climate change: This was achieved by altering dynamically the potential climate 587 

suitability of each local unit of the meta-population (grid cell) at each iteration of the model, and combining 588 

it with the original habitat suitability layer. The temporal change in habitat suitability across the seascape 589 

reflected a southerly range shift commonly observed in conjunction with latitudinal range dynamics 590 

(Parmesan, 2006), with northernmost habitats becoming progressively unsuitable and southernmost 591 

habitats becoming more so. 592 

 Demographic traits: We modelled fertility, survival, dispersal and population growth. Survival and fecundity 593 

varied spatiotemporally in response to environmental variability (see below). 594 

 Local populations connectivity via dispersal processes: We allowed propagules (i.e. pelagic larvae) of the 595 

invasive species and its interacting prey species (Scenario I only) to disperse across the seascape. We 596 

defined dispersal from local populations based on a dispersal kernel and individual-level probabilities of 597 

dispersal. Adults were considered sessile. 598 

 Environmental stochasticity accounted for stochastic variation in population growth rates. 599 

 Biotic interactions: Predator-prey interactions between A. plancii and a generic coral prey species were 600 

simulated using Lotka-Volterra (predator-prey) equations (Scenario I only). 601 

 Density dependent processes were modelled by allowing population density to increase up to the carrying 602 

capacity, after which individuals die and density returns to non-outbreaking levels. 603 

We ran 100 simulations of 120 time steps each, discarding the first 20, which were used as the burn-in period. 604 

We summarised the outputs across simulations in terms of abundance and occupancy of the invasive species 605 

and its coral prey (Scenario I only).We ran a sensitivity analysis with the main model parameters varying 606 

between ± 20 % over a total of 200 models as determined by Latin hypercube sampling, and then used boosted 607 

regression trees to determine the most important parameters (Supplementary Material). 608 

 609 

 610 
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 611 
 612 

Figure 1. One conceptual model of mutually reinforcing effects of climate change and other 613 

anthropogenic stressors on native invasive jellyfish (gelatinous plankton), with biotic interactions 614 

(i.e., predator-prey relationships) represented by the arrows. (A) Increasing terrestrial runoff and 615 

nutrients loads contribute to eutrophication, leading to unusually high phytoplankton (plankton) 616 

concentrations associated with low oxygen concentrations (Miller & Graham, 2012). These 617 

conditions promote the growth of jellyfish populations, sustained by plankton resources usually 618 

consumed by fish stocks and fish larvae (nekton). Fish stocks are subsequently impacted by this 619 

reduced availability of plankton resources, as well as by continuously increasing fishing effort (e.g. 620 

Pauly et al., 2002). The reduced size of fish stocks results in a reduced uptake of planktonic 621 

resources, thus made available to sustain further jellyfish blooms (Licandro et al., 2010; Lynam et al., 622 

2011). (B) Climate change favours gelatinous plankton species that are able to adapt to new 623 

environmental conditions and increase in abundance rapidly (Lynam et al., 2011). The composition 624 

of nekton communities and fish stocks is altered not only as increasing fishing efforts remove fish 625 

predators (Pauly et al., 2002) but also as surface temperature increases leading to the dominance of 626 

(sub)tropical species (Cheung et al., 2013). Because these subtropical species are unlikely to prey on 627 

the same plankton species as their temperate peers, planktonic resources not consumed by fish are 628 

more readily available to sustain increasingly frequent and extensive jellyfish blooms.   629 
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 632 

Figure 2. Forecasts of a marine invasion process under climate change using a spatially explicit 633 

demographic modelling framework. Model parametrisation is based on a synthetic example for the 634 

coral-eating crown-of-thorns seastar (Acanthaster planci) and its coral prey (see text). (A) Scenario I 635 

includes a trophic interaction between the marine invasive species and its coral prey, while (B) 636 

Scenario II considers only dispersal and population growth. In both panels (A, B), top and bottom 637 

rows show population size and spatial occupancy over time, respectively; columns represent levels 638 

of clustering (i.e. aggregation) in suitable habitat from cluster 1 (numerous small patches) to cluster 639 

3 (few large patches). Climate change was modelled using variable habitat suitability layer from time 640 

step 1 to 100 (the length of simulations). See Supplementary Material for a detailed description of 641 

the model implementation.  642 

 643 

POSTPRINT upload  15Nov 2017 http://www.sciencedirect.com/science/article/pii/S0006320716307686

https://www.nespmarine.edu.au/document/forecasting-marine-invasions-under-climate-change-biotic-interactions-and-demographic




