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Abstract

Efficient monitoring of organisms is at the foundation of protected area and biodiversity man-

agement. Such monitoring programs are based on a systematically selected set of survey

locations that, while able to track trends at those locations through time, lack inference for

the overall region being “monitored”. Advances in spatially-balanced sampling approaches

offer alternatives but remain largely untested in marine ecosystems. This study evaluated

the merit of using a two-stage, spatially-balanced survey framework, in conjunction with

generalized additive models, to estimate epifauna cover at a reef-wide scale for mesophotic

reefs within a large, cross-shelf marine park. Imagery acquired by an autonomous underwa-

ter vehicle was classified using a hierarchical scheme developed under the Collaborative

and Automated Tools for Analysis of Marine Imagery (CATAMI). At a realistic image sub-

sampling intensity, the two-stage, spatially-balanced framework provided accurate and pre-

cise estimates of reef-wide cover for a select number of epifaunal classes at the coarsest

CATAMI levels, in particular bryozoan and porifera classes. However, at finer hierarchical

levels, accuracy and/or precision of cover estimates declined, primarily because of the natu-

ral rarity of even the most common of these classes/morphospecies. Ranked predictor

importance suggested that bathymetry, backscatter and derivative terrain variables calcu-

lated at their smallest analysis window scales (i.e. 81 m2) were generally the most important

variables in the modeling of reef-wide cover. This study makes an important step in identify-

ing the constraints and limitations that can be identified through a robust statistical approach

to design and analysis. The two-stage, spatially-balanced framework has great potential for

effective quantification of epifaunal cover in cross-shelf mesophotic reefs. However, greater

image subsampling intensity than traditionally applied is required to ensure adequate obser-

vations for finer-level CATAMI classes and associated morphospecies.
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Introduction

Research programs worldwide aim to monitor biodiversity in an effort to identify conservation

priorities and assess management actions [1]. Monitoring for conservation can be challenging

because adequately estimating abundance, occurrence, cover or species richness can be ham-

pered by logistical problems associated with access to the region of interest [2] and accurate

detection of species [3, 4]. As a result, many researchers are trying to identify efficient survey-

ing tools that will quantitatively assess the status and distribution of species, often with varying

life history and habitat requirements.

Despite this increased interest and investment in monitoring programs, resources are lim-

ited, often resulting in the need to undertake multiple objectives simultaneously [5]. Ideally, an

efficient survey design would be tailored to a specific, narrow set of objectives (e.g., monitoring

the recovery of a species). However, over the longer term, the focus of monitoring programs

may change as more is learned about the ecosystem(s) being monitored or as management

questions/priorities evolve. In such instances, a survey design highly tailored to a specific set of

objectives will become obsolete. Ultimately, we need to strategically choose which, of the many

components of an ecosystem should be monitored, survey locations to target, and the survey

tool to collect the monitoring data in an attempt to maximize conservation outcomes.

In addition to survey designs being flexible, monitoring sites need to be representative of

the area or population of interest. Increasingly, monitoring programs are moving away from a
priori choosing specific and potentially unrepresentative sites to monitor (judgemental sam-

pling) to probabilistic sampling where every part of the survey area or population has some

chance of being surveyed. Spatially-balanced probabilistic survey designs, which as the name

suggests spreads samples well throughout the survey area, are considered state-of-art (e.g., [6,

7–10]) because they are efficient and flexible. It is only recently that spatially-balanced designs

have been applied in the assessment of marine ecosystems, including demersal and pelagic

marine fishes [8, 11, 12] and seafloor habitats [13]. They are being considered as the standard

for designing/conducting multiple-objective monitoring within Australia’s Marine Park

(AMP) network and here we examine their utility for quantitatively estimating seafloor epifau-

nal communities. Typically, shelf habitats found in AMPs are beyond diving depths (below 30

m), so are unable to be surveyed using traditional scuba-based approaches commonly used in

biodiversity-based monitoring programs (e.g., [14]). Until recently, these deeper shelf habitats

had rarely been quantitatively surveyed for the cover of epifaunal communities due to the

absence of appropriate tools. Technological developments in sophisticated tools over the last

decade mean that it is now possible to photographically survey the epifaunal communities

associated with the seabed using geo-located stereo photography with high degrees of posi-

tional accuracy [15, 16]. Autonomous underwater vehicles (AUVs) are at the forefront of such

tools, and can capture precisely geo-located images along pre-programed transects, and at a

consistent elevation above the seabed to maintain a constant search area for subsequent scor-

ing of imagery [15, 17].

Traditionally such imagery is semi-qualitatively scored in a top-down approach to iden-

tify broad habitats or biotopes for mapping purposes (e.g., the European Nature Informa-

tion System [18]). Increasingly, more detailed information than habitat or biotope type is

required from such imagery. However, precise, species level, taxonomic identification (such

those achieved in the World Register of Marine Species [19]) from imagery is often difficult

without physical sampling of specimens and exhaustive species catalogues to provide valida-

tion [20]. To address the need for standard approaches for identifying biota from imagery,

Althaus et al. [21] developed a hierarchical classification scheme for scoring biological com-

ponents observed in such imagery, allowing imagery to be scored from multiple levels from
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Phyla to morphospecies. Known as the Collaborative and Automated Tools for Analysis of

Marine Imagery (CATAMI), the scheme enables the hierarchical classification of imagery

beyond broad habitat or biotope.

In this research paper we investigate the outcomes of when such survey tools and classifica-

tion schemes are coupled with spatially-balanced sampling designs. We use the spatially-bal-

anced sampling design applied to AUV transects and images to calculate estimates of epifaunal

cover and the associated uncertainties at multiple levels of the CATAMI biological hierarchy.

We aim to assess the development of a method for obtaining accurate baseline estimates of epi-

faunal cover at whole-of-reef scales. The outcome, if successful, will be used to inform the

quantitative inventory, monitoring and management of biodiversity on shelf reef systems

within the network of AMPs. The validation of this survey design represents an important step

in the adoption of AUV-based monitoring of AMP network.

Materials and methods

Study site

The study was located in the multiple use zone (IUCN VI) of the Flinders Marine Park (40˚

37’S, 148˚46’ E). The Flinders Marine Park is approximately 20 km offshore of northeastern

Tasmania, Australia (Fig 1), and is influenced by southward incursions of the East Australian

Current (EAC) in summer months. As a result, the biota of the region includes a mixture of

cold-temperate water species, as well as organisms more commonly found in warmer temper-

ate waters [22, 23]. The seafloor is dominated by soft sediments with isolated patches of low

profile reef [24], that are characterized by slightly dipping sedimentary rock formations that

erode the bedding planes to make long, linear ledge features of 1–2 m in height [25]. These

reefs support a variety of sessile invertebrates including porifera, hydrozoans, bryozoans and

ascidians that are thought to be characteristic of the broader region of eastern Tasmania [25–

27]. We selected a large isolated reef at the continental shelf edge as the basis of our study to

describe faunal cover at whole-of-reef scales.

Appropriate ethics (University of Tasmania Animal Ethics Permit: A12514) and fieldwork

(Australian Government Director of National Parks Approval of Research Activities in the

Southeast Commonwealth Marine Park Network: Ref. No 07/10622) permits were obtained

for this work.

Multibeam sonar data

The multibeam sonar (MBS) data were acquired using a hull-mounted Kongsberg EM3002

multibeam sonar on a 22-m research vessel, with the data being logged in Kongsberg acquisi-

tion software. Post-processing was completed in Caris HIPS and SIPS software to remove arte-

facts. The final bathymetric and backscatter intensity outputs were processed at 3 m horizontal

resolution for subsequent analysis in a GIS platform.

From the bathymetric surface, seven seabed terrain variables were derived: eastness, north-

ness, structural complexity (i.e. slope of the slope; S1 Fig), rugosity, slope, plan curvature, pro-

file curvature and maximum curvature (S1 Table). The derived variables were calculated in

ArcGIS spatial analyst or LandSerf [28] in order to quantify a range of structural attributes

across the Flinders Marine Park study area (S1 Table). Additional variables of latitude and lon-

gitude were also generated for the study area. The bathymetrically-derived variables were cal-

culated at five analysis window scales of 3x3, 9x9, 17x17, 33x33 and 65x65 cells, equating to

on-ground window sizes of 81, 729, 2601, 9,801, and 38025 m2 (as in [29]). Multiple spatial

scales were considered because physical and biological processes, such as exposure to current
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Fig 1. Study area map showing locations of autonomous underwater vehicle transects and images selected for interrogation of epibenthos cover.

Underlying data show the substrata classification across the broader region that was produced by Lawrence et al. [15]. Boxes show windows used to

constrain sampling extent where a considerable proportion of reef habitat was mapped.

https://doi.org/10.1371/journal.pone.0203827.g001
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circulation, food particle delivery, and species interactions, operate on various spatial scales

[29–33]. Thus, including them is known to improve model accuracies [34].

AUV imagery

Seabed images were collected with a synchronized pair of high sensitivity 12 bit, 1.4 megapixel

cameras (AVT Prosilica GC1380 and GC1380C; one monochrome and one color) fitted to a

modified Seabed class AUV, detailed in Williams et al. [15]. The position of the AUV was cal-

culated using a doppler velocity log including a compass with integrated roll and pitch sensors

and ultra-short baseline acoustic positioning system [15].

We were primarily interested in reef habitat within this region, so we limited the survey

extent to the area that contained hard-substratum identified from the classification of MBS

data collected in this region [13]. A 1x1 km grid was overlaid on the area containing hard-sub-

stratum and the starting point of transects selected (using the spatially-balanced approach

known as generalize random tessellation stratified; GRTS [6]) within each 1 km grid with

equal inclusion probability. In the field we were able to complete 24 spatially-balanced tran-

sects with four transects in each of six grid cells. These AUV transects covered depths of c 60–

92 m. Each AUV transect was pre-programmed so that the AUV tracked the seabed at an alti-

tude of ~ 2 m at a cruising speed of 0.5 ms-1, capturing an image every 0.5 s with an approxi-

mate width of the field of view of 1.5–2.5 m per image. All surveys were conducted during

daylight hours over three days in June 2013.

Scoring of imagery from the AUV was undertaken using TransectMeasure software (www.

seagis.com). The objective of this research was to determine if reliable estimates of cover could

be achieved at the finest possible taxonomic resolution, factoring in the time it takes to score

AUV imagery. Ten images selected using GRTS along a line (generalized random interval

sampling) were scored using 50 random points superimposed on each image and the underly-

ing biota classified to morphospecies (i.e. “species” were distinguished based on morphological

differences such as shape and/or color). Morphospecies to the size of at least 2 cm could be

reliably differentiated. Each morphospecies was assigned a parental hierarchical CATAMI

class, which enable morphospecies to be grouped hierarchically to determine the best taxo-

nomic resolution for estimates of cover. The CATAMI scheme has up to six levels, ranging

from broad taxonomic classes (level 1) to a reasonably fine level (level 6) that combines taxon-

omy and physical morphology [21].

Analytical approach

The selection of AUV images described above is a two-stage, spatial-balanced sampling design

based on GRTS where the start points of the transects and the selected images within those

transects are randomized. It is important to note that we have not applied GRTS in the original

manner where spatial balance is usually achieved by randomizing in two dimensions simulta-

neously because efficiency would be severely reduced if the AUV were to be regularly moved

from site to site. Accordingly, traditional GRTS estimators do not apply. The selection of

images within the transect using 2nd stage of spatial balance was chosen as it decreased spatial-

autocorrelation between samples when compared to simple random designs with mean Mor-

an’s I values at CATAMI level 1 of 0.08±0.02SE and 0.03±0.02SE for random and spatially-bal-

anced samples, respectively.

We used generalized additive models (GAMs), which are flexible, nonparametric generali-

zations of generalized linear regression [35], to provide estimates of area-wide epifaunal cover

based on the scored AUV imagery and the multiscale seabed variables. The GAMs are used as

a model-based approach to calculate estimates that can accommodate various sampling/design
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regimes if sampling is reasonably representative of the covariate space, and there are sufficient

data to estimate model parameters, which are intrinsic properties of a well-designed, spatially-

balanced sample. Using a combination of probabilistically sampled data and model-based

analysis (GAMs) provides some protection against model miss-specification whilst allowing

the calculation of estimates across a fine-scale grid (see [36]).

An individual binomial GAM was constructed for each hierarchical CATAMI class using

‘mgcv’ package in R software. The GAMs were fitted with a cubic spline smooth and four

degrees of freedom after varying these parameters [37]. The models were constructed manually

in a backward stepwise manner. Terms were removed from the model such that each step

resulted in the smallest significant reduction in residual deviance when compared to the previ-

ous model using an approximate chi-square test [37]. Only significant terms were retained in

each GAM. Explained deviance (d2) of each model was also compared as a measure of accu-

racy, taking into account the number of degrees of freedom [38]. Cover estimates were calcu-

lated by approximately integrating the GAM across the region. That is, predicting from the

GAM across a fine-scale grid of equally spaced points and taking the sum. The coefficient of

variation (C.V.) was used as a measure of precision for these cover estimates, and was calcu-

lated based on the variance approximated using the delta method (see [39]). It represents the

variance of the cover estimated by the model, based on the variance of the model predictions

[37]. What constitutes an acceptable level of accuracy and precision will vary depending on the

context and specifically the inference questions being asked. Here, we considered any model

with a d2 > 0.6 as adequately accurate [40] and C.V. values < 0.3 as adequately precise [41].

Covariates were standardized prior to inclusion in GAMs so that variable importance could

be calculated. Ranked variable importance was calculated by counting the number of times (as

a proportion), that particular variable was retained in the final GAM for each CATAMI class

or morphospecies.

Results

Description of epifaunal assemblage

A total of 127 morphospecies were identified in the AUV imagery (S2 Table). Of these, only

16% were observed greater than 5 times, with 50% being singletons (i.e. only recorded once).

Representatives from the porifera CATAMI class dominated the assemblage with 88 morphos-

pecies being identified, followed by 14 morphospecies from the cnidarian CATAMI class, and

eight morphospecies each of ascidian and bryozoan classes (S2 Table). Within the porifera

CATAMI class, massive, branching and encrusting forms were most common.

Model-based estimates of epifaunal cover

Of the 127 morphospecies recorded, only 19 were observed frequently enough (i.e. > 5 obser-

vations) to derive model-based estimates of cover (S2 Table). These 19 morphospecies con-

sisted of 14 porifera, two cnidarian, and two bryozoan morphospecies, as well as a mixed

undistinguishable cnidarian/bryozoan/hydroid matrix class (S1 and S2 Tables). Accuracy, as

described by d2, for these 19 morphospecies varied considerably from a low 4.0 to a respectable

67.6%, with a mean of 25.3% (S2 Table). Precision (i.e. C.V.) also varied widely from 0.06 to

0.84 (S2 Table). Subsequent estimates of cover were quite low, with values ranging from 0.005

to 5.3% of the study region, reflecting the low prevalence of component epifauna within the

study site (S2 Table).

Out of the 19 morphospecies modeled, only 21% (i.e. 4 classes) exhibited precision

values< 0.3 (Table 1), with none of these also yielding accuracies> 60% (i.e. accurate and pre-

cise cover estimates; Table 1). There also appeared to be no clear pattern between accuracy and
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precision, meaning that accurate estimates could yield low precision values, and vice versa (S2

Table). For example, the morphospecies with the highest accuracy (i.e. “bryozoan 3 Cantini-
cella like” with a d2 = 67.6) had low precision (C.V. = 0.57; S2 Table). By contrast, the mor-

phospecies “simple erect 1 cream” had low accuracy (i.e. d2 = 24.9), yet high precision (C.V. =

0.10; S2 Table).

Of note was the fact that morphospecies had to be grouped to their broadest parental CAT-

AMI class (i.e. CATAMI levels 1 or 2) before accurate and precise estimates of epifaunal cover

were achieved (Table 1 & S2 Table). However, even at these broad CATAMI hierarchies there

were only three CATAMI classes that met the accuracy and precision criteria, including bryo-

zoan class (at CATAMI level 1), bryozoan (soft) class (at CATAMI level 2) and porifera (CAT-

AMI level 1) (Table 1 & S2 Table).

Ranked predictor importance

The number of predictors retained in the final models varied between CATAMI classes and

morphospecies, and across taxonomic hierarchies (Fig 2). Overall, bathymetry and backscatter

intensity were the top-ranked variables, being retained in at least one model for five of the

seven taxonomic hierarchies (Fig 2). At the broadest class (i.e. CATAMI level 1) backscatter

was the most important variable, being retained in ~80% of the models (Fig 2). Interestingly,

however, backscatter was not retained in any of the models at the morphospecies level (Fig 2).

Generally, variables at the smallest analysis window scale (i.e. 3x3 cells) were retained more

frequently in final models than their broad-scale counterparts. For example, complexity was

retained in four of the seven taxonomic levels at the 3x3 cell analysis window scale, while its

broader scale counterparts were almost never retained in the final models, with the exception

of one model at CATAMI level 2, which retained complexity at a 9x9 cell analysis window

scale (Fig 2).

Discussion

It is important to conduct a critical evaluation of a survey tool and sampling design prior to it

being integrated into an ongoing monitoring program. This is largely because if data from

such an approach do not result in sufficient accuracy and precision, then inferences used for

management of the target ecosystem(s) may be poor or even incorrect [42]. Here, we under-

took an assessment of baseline inventory, which may be employed for a future monitoring pro-

gram whilst simultaneously evaluating a two-stage, sampling design to quantitatively estimate

the cover of reef-associated morphospecies and classes at the whole-of-reef scale based on tran-

sect subsamples. We found that greater image subsampling intensity than applied here would

Table 1. Summary of model precision and accuracy for epifaunal classes recorded in each taxonomic hierarchy. Complete model outputs are provided in S2 Table.

CATAMI level No. of classes

recorded

Proportion of classes

modeled

No. met accuracy criteria (d2 >

0.6)

No. met precision criteria (C.V.

< 0.3)

Proportion met both

criteria

1 7 0.71 5 3 0.29

2 15 0.60 9 2 0.07

3 20 0.60 12 2 0

4 6 0.83 5 0 0

5 4 0.50 2 0 0

6 3 0.67 2 0 0

Morphospecies 127 0.15 19 1 0

https://doi.org/10.1371/journal.pone.0203827.t001
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be required to provide accurate and precise estimates of reef-wide cover of finer-level CAT-

AMI classes and associated morphospecies.

It is unsurprising that only three broad-level CATAMI classes could be modeled with suffi-

cient accuracy and precision because nearly 98% of morphospecies and 67% of parental CAT-

AMI classes were observed in 10 or fewer AUV images (S2 Table). The link between sample

size and model accuracy is well established in the literature, with studies suggesting that some-

where between 30 to 100 observations are sufficient to generate robust models of species distri-

bution (e.g., [43, 44–46]). Here, we could not successfully meet our accuracy and precision

criteria until we had observations of 250 or more to fit our models. This indicates that substan-

tially larger sample sizes than suggested by previous research may be required to achieve accu-

rate and precise estimates of epifaunal cover using occurrence datasets from AUV imagery. It

is therefore recommended that a minimum of 250 observation records are used with this

approach. However, attaining such a sample size is clearly difficult because seabed assemblages

around Australia are well known to be dominated by as many as 30–80% singletons (e.g., [25,

47, 48]). Accordingly, no single survey design or sampling tool can be expected to capture the

abundance/cover of all organisms with high degrees of accuracy and precision. It is therefore

important to consider ways to increase sample sizes and thus potentially increase accuracy and

precision of estimates from models.

Fig 2. Summary of ranked predictor importance based on predictor variables retained in final models. White cells indicate variable was never retained in final

model for any of the classes or morphospecies. Full names are described in S1 Table.

https://doi.org/10.1371/journal.pone.0203827.g002
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A simple consideration for achieving improved accuracy and greater precision may be to

increase the number of images scored per transect and/or the number of points scored within

each image. Studies have shown that a large number of points per image (up to 100) may be

needed to adequately capture the diversity of organisms within an image (e.g., [49]). Impor-

tantly, however, Van Rein et al. [50] and Perkins et al. [51] suggest that, while a higher number

of points per image can increase the detection rate of more organisms within an image,

increasing the number of scored images using fewer points is likely to have a similar effect. Ide-

ally, increasing both the number of images scored and the number of points scored within an

image would result in greater power to improve the accuracy and precision of epifaunal cover

estimates [52]. Unfortunately, the adoption of this approach is likely to result in substantial

increases in processing time and therefore cost. Alternatively, targeted scoring could be used,

whereby each image is scored for a select number of key indicator organisms. However, the

selection of indicator organisms is somewhat difficult, and an often subjective exercise, espe-

cially where there is little or no existing biological information available for the ecosystem

being studied [53].

Overall, we advocate the use of a multi-tiered scoring approach, whereby a master sample is

created which provides a list of images that are spatially balanced provided that they are scored

in order. An initial subset of these master sample images is then scored, and organisms

recorded from this subset of images are then cross-tabulated to establish a list of numerically

abundant organisms for the study ecosystem. This list could then be used to facilitate targeted

scoring across a subset of the remaining images in the master sample to strengthen the sample

size of these key organisms/classes. Alternatively, if the whole assemblage is important to the

study (i.e. an inventory of the organisms’ present) then, instead of targeted scoring the second

subset of the spatially-balanced master sample images, these images could be scored the same

way as the initial subset, and the process repeated until sufficient sample sizes are obtained. By

using either approach, greater power will be achieved, resulting in increased accuracy and pre-

cision of epifaunal cover estimates, whilst mitigating the additional time and money associated

with unnecessary scoring of additional images.

Another consideration that is likely to improve the precision and accuracy of models is the

choice of predictor variables used to extrapolate cover estimates across space. The ranked

importance revealed that, in addition to backscatter and bathymetry, fine-scale predictor vari-

ables were often more important than their broad-scale counterparts. This is perhaps unsur-

prising given previous research in the region has highlighted the importance of fine-scale reef

ledge features in driving patterns in sessile epifaunal [25]. While we used a multiscale approach

to derive predictor variables, as it is widely regarded to be superior to single scale models [29,

30, 32], we were limited to spatial- and MBS-derived predictor variables. Other physical factors

influence the distribution and abundance of seafloor biota. For example, variables describing

wave/current exposure at the seabed are known to improve predictions of seabed associated

flora and fauna (e.g., [54, 55, 56]). Biological productivity and chemical variables are other var-

iables that have been used explain the distribution of cold-water corals, however usually at

coarse resolutions (30 arc second grid) (e.g., [57, 58, 59]). It should also be noted that infer-

ences from such coarse data are known to significantly overestimate cover estimates of marine

organisms, potentially leading to incorrect interpretations by management agencies, such as

amount of habitat contained in a particular area [60, 61]. Accordingly, if such data were not

available at a similar resolution to that of the fine-scale MBS then we caution their use in such

a modeling framework. However, if available at sufficient resolution, such variables should be

considered as they will likely improve the precision and accuracy of epifaunal cover estimates,

perhaps without the need for additional image scoring.
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We also found that precision often remained low for morphospecies and associated paren-

tal CATAMI classes even if moderate accuracy was achieved. Understanding why an estimate

of cover exhibits such low precision is clearly important. Perkins et al. [51] suggest that for

organisms with< 10% cover, a characteristic commonly observed within AUV and other

imagery, increased sample sizes may improve accuracy, while precision remains low. We sug-

gest low precision could be a result of spatial, temporal, and residual variation. Spatial variance

is the site-to-site variation, and may be reflective of the natural variability in the organism(s) of

interest, and potentially not too much of a concern in the assessment of temporal fluctuations

in organism(s). Temporal variance, however, is undesired because it can obscure trends over

time. The effects of residual variation, which is due to seasonal variation during sampling,

crew-to-crew differences in applying the monitoring protocol, and measurement error, can be

reduced by means of a well-designed monitoring protocol and accurate survey tools (such as

the AUV in the present study and in the future automated image processing). Importantly,

however, it is only once a monitoring approach is implemented temporally, that the ability to

disentangle these three sources of imprecision from one another can be achieved. This chal-

lenge remains to be addressed.

Finally, these results have important implications for scientists in how they report and

communicate information to decision makers, and even to advance scientific understand-

ing and improve future research. When survey results are reported without a clear

description of their precision and accuracy, there is a risk that they will be over-inter-

preted by users. When results are presented as spatial areas on maps that can often appear

to imply greater accuracy than is warranted from the data themselves. The communica-

tion of Type I and Type II errors have routinely been proposed as good practice in science

to qualify research findings (e.g., [62]). Here we advocate for similar metrics are needed to

communicate the accuracy and precision of inferences from distributional models (e.g.,

[61]). This research makes an important step in that direction, by identifying the con-

straints and limitations through a robust statistical approach to the design for monitoring

programs and analysis of image data.
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