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Summary 

A critical assumption underlying projections of biodiversity change associated with global warming is 10 

that ecological communities comprise balanced mixes of warm and cool affinity species which, on 

average, approximate local environmental temperatures. Nevertheless, we find most shallow water 12 

marine species occupy broad thermal distributions that are aggregated in either temperate or 

tropical realms. These distributional trends result in ocean-scale spatial thermal biases, where 14 

communities are dominated by species with warmer or cooler affinity than local environmental 

temperatures. We use community-level thermal deviations from local temperatures as a form of 16 

sensitivity to warming, and combine these with projected ocean warming data to predict warming-

related loss of species from present-day communities over the next century. Large changes in 18 

species composition at the site-scale appear likely, and proximity to thermal limits, as inferred from 

present-day species’ distributional ranges, outweighs spatial variation in warming rates in 20 

contributing to predicted rates of local species loss. 
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Main text 

The inherent vulnerability of ecological communities to global warming, and therefore the 24 

magnitude of associated biodiversity change, is considered a function of exposure and sensitivity to 

warming, coupled with species’ adaptive capacity1-3. Geographic models of future biodiversity 26 

change generally accommodate the magnitude, direction and distribution of temperature change4-8, 

but have limited ability to account for sensitivity. Our understanding of sensitivity to warming has 28 

been largely based on results of comparative studies of species physiological tolerances and other 

life-history traits, often with extension from the laboratory to the field9-12. Extrapolation to whole 30 

ecological communities and large geographic scales, does, however, introduce substantial 

uncertainty, yet these are the scales critical for understanding natural ecosystem functioning13, on 32 

which the well-being of human society depends. 

The few studies that have considered community-level sensitivity to warming3,7,14 have not 34 

accounted for geographic patterns in species distributions, inherently assuming that communities 

comprise balanced mixes of relatively warm and cool affinity species, and with no spatial trends or 36 

regional consistency in any deviation from this. Regional variation in species composition may be 

influenced by numerous historical, ecological and phylogenetic factors that could potentially result 38 

in thermal bias of communities in relation to local environmental temperatures, with important 

implications for community-level sensitivity to warming. If, for instance, most species have a warmer 40 

affinity than the mean local temperature, then the local community may have little intrinsic 

sensitivity to negative change with warming. In this case, proxies previously used for inferring 42 

sensitivity, such as habitat type or integrity3, may provide limited predictive insight. Quantifying the 

direction and magnitude of community thermal bias is therefore an important step in improving our 44 

understanding of the sensitivity of ecological communities to structural reorganisation with 

warming, and providing a more direct means to account for sensitivity in predictions of vulnerability. 46 
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Thermal Biogeography 48 

The Community Temperature Index (CTI) is a measure (a community-weighted mean) of the average 

thermal affinity of ecological communities, and has recently been used to quantify warming in 50 

birds15,16, butterflies17 and fishes18, and global commercial fisheries catches19. Here we use the CTI of 

shallow water marine fishes and invertebrates to test for thermal bias in the global distribution of 52 

marine communities in relation to local environmental temperatures. 

We constructed geographic and thermal distributions for 2,695 reef fish and 1,225 mobile 54 

macroinvertebrate species using occurrence records from two of the world’s most comprehensive 

databases for shallow water marine species (Global Biodiversity Information Facility, www.gbif.org, 56 

and Reef Life Survey20,21, www.reeflifesurvey.com), combined with remotely sensed long-term mean 

sea surface temperature22. We used the midpoint of the realised thermal distribution as a measure 58 

of the central thermal tendency for each species, or thermal affinity. On average, this aligns with the 

temperature at which species occur at their maximum abundance in the field (see methods), and is 60 

therefore a good proxy for the temperature of a species’ maximum ecological success. 

We then compiled the first global-scale dataset of abundance-weighted CTI values from systematic 62 

quantitative sampling, using abundance data for all fish and invertebrate species recorded on 

standardised visual censuses at 2,447 sites by the Reef Life Survey (RLS) program (see methods; ED 64 

Fig 1). This approach thus incorporates patterns in species’ dominance related to thermal affinity.  

A non-linear global pattern is evident in CTI values, with relatively little change with increasing 66 

temperature in tropical and temperate regions, and a rapid increase in subtropical regions creating a 

distinct step (Fig 1; ED Fig 2a, b). This pattern is consistent between fishes and invertebrates 68 

(Pearson correlation = 0.98; n = 2,383; p<0.01) and is the same when CTI is calculated without 

weighting by abundance (i.e. using presence data; ED Fig 2c, d). A direct result of this non-linearity in 70 

global CTI is that the majority of locations are characterised by marine communities with either 
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higher or lower CTI than would be expected from local SST (ED Fig 3). Thermal bias is ubiquitous 72 

among these communities, which are typically numerically dominated by species with warmer or 

cooler affinity than the local environment. 74 

The proximate cause of large-scale patterns of thermal bias is that marine species distributions do 

not follow the monotonic latitudinal and temperature gradients observed in species richness23,24. 76 

Instead, we find that the majority of species studied have ranges centred in either temperate or 

tropical zones (ED Fig 4), and consequently show a corresponding multimodal distribution of the 78 

thermal affinities (i.e. thermal guilds; Fig 2). This trend is consistent when considered for different 

ocean basins and biogeographic regions. Additional to the major temperate/tropical dichotomy, the 80 

invertebrate data suggest the presence of a third, sub-polar thermal guild (Fig 2b). 

Thermal guilds align with the theory that temperature can be considered as an ecological resource in 82 

freshwater fishes25, and can be distinguished within other independent datasets of marine species 

(see Supplementary Information). The findings of globally coherent thermal guilds is not the result of 84 

spatial sampling structure of the data, such as a consequence of relatively few surveys in the 

subtropics; a latitudinal transect along the well-surveyed north-south trending eastern Australian 86 

seaboard clearly distinguishes tropical from temperate faunas along the full cline (ED Fig 5). There 

are several potential, non-mutually exclusive mechanisms that may explain these findings: (a) Fewer 88 

shallow water species may have ranges centred in subtropical ocean climates as a result of less 

continental shelf area at subtropical latitudes globally26; (b) Historical biogeographic processes could 90 

be implied for the Australian fauna, through mixing of tropical Pacific/south-east Asian and 

temperate Australian faunas as the Australian continental plate drifted north, with species 92 

conserving thermal preferences (i.e. phylogenetic inertia27); (c) Tropical centres of speciation and 

subsequent colonisation of temperate regions through ‘bridge species’ may have occurred (the ‘out 94 

of the tropics’ hypothesis26), and is supported by the distributions of thermal affinities of species in 

large families of fishes that span temperate and tropical zones (ED Fig 6); (d) There could be adaptive 96 
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advantages associated with specialisation for either warm or cool temperature ranges, with trade-

offs in metabolic processes reducing widespread adaptation to intermediate temperatures.  98 

Regardless of the ultimate divers, the existence of consistent thermal guilds and associated global-

scale patterns of thermal bias has implications for whether the net community response to warming 100 

is more likely to be positive or negative (in terms of abundance changes). It also raises the possibility 

that communities in some locations may be more vulnerable to losing species than in other 102 

locations, simply on the basis of the direction and magnitude of the bias in the thermal distributions 

of the species present. 104 

 

Vulnerability of marine communities to warming 106 

Most previous biodiversity vulnerability analyses have focussed on species, and their ability to 

change their geographic distribution or adapt to avoid global extinction10,28. Here we quantitatively 108 

assess the vulnerability of whole communities - groups of species that are currently recorded as co-

occurring and interacting at an ecologically-relevant scale. A local ecological community is 110 

considered vulnerable if it is likely to lose many of its constituent species. This may not translate to 

reductions in overall species richness (although see below), but does reflect a relative vulnerability 112 

to change in community structure and ecosystem functioning, and contrasts with desirable 

management goals of resilience or stability in the face of warming29. 114 

Over decadal scales, positive thermal bias of the magnitude observed for some locations in this 

study (e.g. where the mean thermal affinity of the community is 3oC greater than local mean SST) is 116 

much greater than predicted ocean warming rates of <0.4oC per decade, and could be interpreted to 

translate to low probabilities of species loss as a result of warming, or relatively low community 118 

sensitivity to negative change. Most species in such locations are also found in other warmer 

locations, and so are unlikely to be negatively affected by warming. However, the likelihood of local 120 
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loss of species on the basis of increasing temperature will be more dependent on how close each of 

the species is and becomes, at that location, to the maximum of its thermal distribution, rather than 122 

from the midpoint (as used to define thermal bias in our thermal biogeographic analysis). To account 

for this, we recalculated CTI using the 95th percentile of species’ thermal distributions as a measure 124 

of contemporary realised upper thermal limits (CTImax). Realised upper limits will be lower than 

fundamental limits based on physiological tolerances, but arguably better reflect real world limits, 126 

where species not only need to survive physiologically, but also persist in a competitive and 

predatory environment. 128 

For calculation of CTImax to estimate species loss with warming, we used presence rather than 

abundance data and combined RLS survey data for fishes and invertebrates, thereby covering the 130 

majority of macroscopic mobile fauna (>2.5 cm) on rocky and coral reefs at sites investigated. We re-

calculated thermal bias (TBiasmax) as the difference between CTImax and mean summer temperatures 132 

(mean SST from the 8 warmest weeks annually from 2008-201430). This can be considered a form of 

‘distribution safety margin’27, and shows a similar global pattern to that shown in our thermal 134 

biogeographic analysis (ED Fig 7), with CTImax and CTI very closely related (Pearson correlation = 0.96; 

n = 2,089; p<0.01). 136 

CTImax also shows a stepped relationship with summer SST (ED Fig 8), reflecting some consistencies 

among species’ realised upper thermal limits within tropical and temperate regions at the global 138 

scale. For example, CTImax remains between 22oC and 24oC across most sites with summer 

temperatures ranging from 14oC to 24oC, implying that the average species is living closer to their 140 

warmest distributional margin at locations with summer temperatures ca. 24oC than at locations 

which experience summer temperatures ca. 14 oC. TBiasmax is consequently more positive for the 142 

latter, although sites dominated by species in the tropical thermal guild (as identified in Figs 1 and 2) 

that experience summer temperatures ca. 24oC (i.e. on the upper step of ED Fig 8) also have high 144 

TBiasmax and inferred low sensitivity. 
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While TBiasmax can be considered a form of community-level sensitivity, it does not account for 146 

warming rates, another important component of vulnerability1,2. To explicitly account for spatial 

patterns in warming rates and provide quantitative vulnerability predictions for marine 148 

communities, we further calculated the proportion of species in the community that would exceed 

the upper limit of their realised temperature distribution in 10 and 100 years from present. These 150 

are based on each species’ contemporary upper thermal limits, recent summer temperatures, and 

the rate of warming expected at each site (based on ensemble averages from all climate models 152 

included in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) for 

sea surface temperature anomaly under the RCP8.5 scenario predicted for 2050-2099; 154 

http://www.esrl.noaa.gov/psd/ipcc/). 

Six of 75 ecoregions included in the analysis are identified in which the mean summer sea 156 

temperature is expected to exceed the upper thermal limit of more than 50% of species recorded by 

2025 (Fig 3a, b). Confidence scores for CTImax values are low for a number of sites in three of these 158 

ecoregions on the basis of less comprehensive sampling of species thermal distributions (see 

methods and ED Table 1), but were high for sites in the Gulf of Thailand, Southwestern Caribbean 160 

and Three Kings-North Cape (NZ). Longer-term predictions are more extreme, with 100% of the 

present-day community composition apparently likely to exceed upper thermal limits in 162 

approximately one-third of surveyed ecoregions by 2115 (Fig 3c, d). These are distributed in all 

ocean basins across the tropics, but also in some temperate areas such as the Great Australian Bight. 164 

Locations of greatest predicted species loss do not closely align to locations of greatest warming, but 

instead correspond closely to the magnitude of thermal bias (measured as TBiasmax; Fig 3 b, d; 166 

GAMM results in ED Table 2). This result is robust to the warming data used (See Supplementary 

Information), and shows that sensitivity associated with community thermal bias is an important 168 

component of vulnerability. Our results further indicate that exposure, and variability in warming 

rate predictions, may be considerably less important than previously suggested1 when it comes to 170 
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local loss of marine species over the next century. Predicted species loss at locations with lower 

thermal bias is considerably greater than at locations with higher thermal bias, despite some of the 172 

world’s most rapidly warming regions occurring within the latter. The western Mediterranean, for 

example, is predicted to warm by 0.24-0.29oC per decade (depending on predictions used), but 174 

typical marine communities there consist of species with contemporary upper limits well above local 

summer SST (mean TBiasmax = 6.3oC ± 1.1SD). 176 

Our predictions do not account for local influx of warmer affinity species, and do not comprise the 

only form of community-level vulnerability to warming. Rather, they describe impacts of an 178 

additional component of ecological vulnerability. Species influx and warming-associated changes in 

species abundances will also contribute to local ecological change and are already occurring in the 180 

most rapidly warming areas that are well-connected to rich tropical faunas, such as south-eastern 

Australia12. Influx of warm affinity species may replace lost species, or lead to accumulating richness 182 

in some regions, and likely have dramatic impacts on ecological processes6,31. Local species loss 

through extinction or range contraction will represent the main form of community change likely for 184 

low latitude regions for which no pool of warmer affinity species exists11,32, however, and so our 

predictions likely cover the major changes in composition expected in these regions. 186 

A key assumption for our vulnerability analysis is that local extinction becomes more likely when a 

site becomes warmer than the typical maximum temperature at which a species has previously been 188 

observed. This assumption relies on the interactive mechanisms which presently set boundaries on 

species’ ranges remaining consistent, such as thermally-driven performance reduction33,34 and 190 

increased susceptibility to competition and predation18,35. This is unlikely true for all species, 

especially narrow range endemics which are probably limited in distribution by factors other than 192 

temperature12. Regardless, we consider this generalisation reasonable in light of the well-connected 

nature of the marine environment, typically large geographic ranges36, and often closely matching 194 

fundamental (assessed in laboratory experiments) and realised (field-derived from distribution data) 
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thermal niches37, as well as implications associated with lower concentrations of dissolved oxygen in 196 

the marine environment with increasing temperature38. 

Our vulnerability predictions also do not account for ecological change resulting from extreme 198 

events, which will change biodiversity in spatially variable and largely unpredictable ways. This is 

particularly true for indirect effects of extreme events, such as through habitat change, which place 200 

critical pressures on biodiversity39, and represent an important direction for future research. 

Additional caveats associated with assessing vulnerability in terms of local loss of species from 202 

present-day communities include: (1) the upper thermal limits for many tropical marine species 

could exceed contemporary ocean temperature maxima, and (2) adjustment and thermal adaptation 204 

could reduce species loss from that predicted. The former does not affect results for temperate 

regions, but could lead to lower vulnerability than predicted for tropical regions, despite results of 206 

laboratory experiments that have applied greater temperatures than contemporary SST suggesting 

that maximum thermal tolerance levels are more constrained for tropical than temperate 208 

species11,27,40. Because of these caveats, we emphasise that absolute values presented in Figure 3 

should be considered as a ‘worst case scenario’ and interpreted with caution. Nevertheless, relative 210 

differences in the magnitude of predicted change between regions and times should be robust, 

other than perhaps overestimation of site-scale species loss at the lowest latitudes relative to cooler 212 

climes. Most importantly, the strength of empirical trends indicates that thermal bias is a 

fundamental element affecting global variability in future biodiversity change. 214 

 

Tracking and managing warming impacts on marine biodiversity 216 

In contrast to prior global studies of potential biodiversity losses associated with climate change, 

which typically consider loss of species from their full distribution or use regional species lists 218 

inferred from range maps, our study focussed on probabilities of local-scale losses from assemblages 
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of interacting species. These will be much more pervasive than cases of global extinction, and have 220 

important consequences with respect to the way ecosystems currently function. We identify a 

substantial pressure of warming through the future, with an alarmingly large proportion of species 222 

predicted to exceed current realised thermal limits based on current distribution patterns. 

Our results imply that locations at which the average summer SST is presently ca. 24oC are most 224 

vulnerable to community change in general. This temperature corresponds to the upper realised 

thermal limit of many temperate species, and consequently a ceiling on CTImax for most temperate 226 

communities. For locations with connections to tropical faunas, it is also where the influx from the 

large pool of tropical species is going to be greatest. By contrast, the warmest tropical locations are 228 

likely to suffer from local loss of species with little replacement, a result consistent among other 

studies relating biodiversity change to global variation in predicted ocean climate velocity4,6. 230 

Management options for decreasing local marine species losses resulting from warming are limited; 

nevertheless, reducing the impacts of other threats, such as pollution, invasive species, and 232 

excessive extraction of living resources, will likely provide the best opportunities for prolonging 

persistence of species at the warm end of their range. While some local losses of species appears 234 

inevitable, management can bolster community resilience to ocean warming through strategies to 

reduce influx of warm affinity species at those regions where accumulation is predicted. Actions to 236 

support more intact naturally-functioning communities are recommended, including 

implementation of marine protected areas (MPAs) and more conservative fisheries management. 238 

Recent evidence from an effective temperate MPA suggests that local predators hinder poleward 

progression of warm-affinity species18, and invasion theory more generally predicts intact and 240 

diverse natural communities possess greater resistance to invasive species than degraded 

communities41. 242 

Abundance-weighted CTI, as used in our thermal biogeographic analysis, offers an important tool for 

measuring the success of such management actions, as it integrates signals from local species gains 244 
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and losses, and also abundance shifts related to temperature. The CTI provides a powerful metric for 

tracking long-term biodiversity change in relation to warming over larger scales15, and for informing 246 

the wider public of the magnitude of warming impacts on biodiversity. It can thus fill a critical gap in 

the indicator suite used for assessing progress towards international targets agreed under the 248 

Convention on Biological Diversity (CBD). However, we must consider for such application that the 

magnitude of CTI change will be non-linear across latitude, with reduced scope for change in tropical 250 

regions. The CTI offers an important opportunity to extend emphasis from charts or maps of 

pressures, such as atmospheric CO2 concentrations and ocean heat content42, towards measures of 252 

real biodiversity change, thereby providing a better understanding of on-ground consequences of 

ocean warming for effective long-term change in policy and behaviour. 254 
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 396 

Figure legends 

 398 

Figure 1. Global community temperature index (CTI) for reef fishes (a) and invertebrates (b) 

against mean annual sea surface temperature (SST). Tropical and temperate communities are 400 

separated by sub-tropical transitions in which communities largely comprise a mixture of temperate 

and tropical species. A line with a slope of one is plotted for reference. N = 2,175 & 1,901 sites for 402 

fishes and invertebrates, respectively, after exclusion of sites with confidence scores <2.5 (see 

methods). 404 

 

Figure 2. Frequency distributions of fish (a) and invertebrate (b) species according to their thermal 406 

distribution midpoint show modes of temperature affinity, or tropical (red), temperate (blue) and 

subpolar (white) thermal guilds. Species for which confidence in thermal midpoints was low are 408 

excluded (see methods).  

 410 

Figure 3. Vulnerability of marine communities to warming-related local species loss. Proportion of 

fish and invertebrate species in present-day communities likely to exceed their upper realised 412 

thermal limit by 2025 (a) and 2115 (c) based on regional IPCC warming rates (RCP8.5 scenario), and 

in relation to the magnitude of community thermal bias (measured as TBiasmax; b, d).  Fitted curves 414 

(solid black line) and 95% confidence intervals (dotted black lines) are from GAMM models 

(Extended Data Table 2). Sites with confidence scores <2.5 were excluded from most ecoregion43 416 

means (See ED Table 1 for sample sizes and details of exclusions). 
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 418 

Methods 

Reef fish and invertebrate data 420 

Standardised quantitative censuses of reef fishes and echinoderms (holothurians, echinoids, 

asteroids, crinoids), molluscs (gastropods, cephalopods), and crustaceans (decapods) were 422 

undertaken by trained recreational SCUBA divers along 7,040 transects at 2,447 sites worldwide 

through the Reef Life Survey (RLS) program. Full details of fish census methods are provided in20,21, 424 

and an online methods manual (www.reeflifesurvey.com) describes all data collection methods, 

including for invertebrates. Data quality and training of divers are detailed in20 and supplementary 426 

material in24. Data used in this study are densities of all species recorded per 500 m2 transect area 

for fishes (2 x 250 m2 blocks), and per 100 m2 for invertebrates (2 x 50 m2 blocks). Four percent of all 428 

records were not identified to species level (mostly invertebrates) and were omitted from analyses 

for this study.  430 

Data from fish and invertebrate surveys were analysed separately for thermal biogeography 

analyses, but combined for the vulnerability predictions shown in Fig 3. Although collected on the 432 

same transect lines, these survey components were collected over different areal extents, and so 

were combined to represent densities per 50 m2 (block size for invertebrate surveys). Raw 434 

invertebrate data were therefore used, but one in five individual fishes were randomly subsampled 

from those surveyed in each 250 m2 block to provide equivalent densities and richness of fishes per 436 

50 m2. 

 438 

Characterisation of species’ thermal distributions 

http://www.reeflifesurvey.com/
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A realised thermal distribution was constructed for all species recorded on RLS transects, based on 440 

occurrences rather than species distribution models. All individual records within the RLS database 

were combined with all records of these species in the Global Biodiversity Information Facility (GBIF: 442 

http://www.gbif.org/), after applying filters to limit records to depths shallower than 26m and time 

of collection since 2004.  This resulted in a dataset of 399,927 geo-referenced occurrences of 3,920 444 

species. 

Remotely sensed local sea surface temperature (SST) data were then matched to each occurrence 446 

location. Long-term mean annual SST values from 2002-2009 from the Bio-Oracle dataset22 were 

used to provide a time-integrated picture of temperatures species were typically associated with for 448 

the thermal biogeographic analysis. The 5th and 95th percentiles of the temperature distribution 

occupied by each species were then calculated, and the midpoint between these used as a measure 450 

of central tendency of their realised thermal distribution. Midpoints were considered a reasonable 

proxy for the temperature associated with species’ maximum ecological success, confirmed by a 452 

close alignment of midpoints with the temperatures at which species occurred in maximum 

abundance in the global RLS dataset (slope of midpoint vs temperature of sites at which species 454 

were at maximum abundance = 1.003, Pearson correlation = 0.93, P<0.001). Thus, inter-specific 

variation is expected, deviation in temperatures either side of the midpoint results in reduced 456 

abundance for the average species. 

We also calculated and explored other metrics from the thermal range, including the median and 458 

mode, but these were more sensitive to the distribution and intensity of sampling effort across the 

temperature range of species, and therefore less robust than the midpoints. Fifth and 95th 460 

percentiles were deliberately chosen as endpoints rather than the maximum and minimum because 

marine species range boundaries are not static, with dynamic tails in distributions44. Sightings of 462 

individual vagrants are common, sometimes at large distances from the nearest viable populations. 

http://www.gbif.org/
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Furthermore, any misidentification errors would have greatest influence if at the edge of species 464 

ranges. 

 466 

Community Temperature Index (CTI) calculation and thermal bias 

CTI was calculated separately for fishes and invertebrates for each transect in the RLS database as 468 

the average of thermal midpoint values for each species recorded, weighted by their log(X+1) 

abundance. Multiple transects were usually surveyed at each site (2.8 transects global mean across 470 

sites used in this study). CTI values were averaged across these to create a site-level mean that was 

used for analyses. In some cases this averaged out seasonal effects, where sites were surveyed 472 

across multiple seasons. 

Thermal bias was calculated as the difference between the CTI and mean annual SST at each site. 474 

Mean thermal bias values across sites surveyed in each ecoregion are shown in ED Fig 3, with sample 

sizes for ecoregions shown in ED Table 1.  476 

 

Confidence scores 478 

The number of occurrence records for each species ranged from a single record (numerous species) 

to 1,009 (the Indo-Pacific cleaner wrasse, Labroides dimidiatus), with an overall mean of 36 records 480 

(47 for fishes, 16 for invertebrates). In order to consider how variation in the comprehensiveness of 

data on the thermal distribution for each species affected the calculation of CTI and provide an 482 

objective measure of confidence in site-level CTI values, we used a semi-quantitative confidence 

scoring system. A confidence value ranging from one (very little confidence) to three (high 484 

confidence) was allocated to each species through a four step process:  
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(1) The number of records (sites) for each species was used as a first pass for classification, with 486 

species observed at 30 or more sites given a value of three, 10-29 sites a value of two, and 

less than 10 sites a value of one. 488 

(2) The thermal range for each species (the difference between 95th and 5th percentiles) was 

used in a second pass for all species that were initially given a value of two. For this, those 490 

species with a thermal range of less than 3oC were reduced to a value of one, as it is possible 

these species have not been surveyed across their full potential thermal range.  492 

(3) Species with a value of three and a thermal range of less than 1oC were reduced to a two, 

given these likely represent well-sampled, but range-restricted species, and their potential 494 

thermal range is likely greater than their realised range (which is likely limited by other 

factors such as dispersal or historical biogeography). 496 

(4) The frequency of occurrences across temperatures was also plotted separately for each 

species. Frequency histograms were visually inspected as a last pass, and confidence scores 498 

reduced by one if the thermal distribution appeared to be unduly influenced by widely 

separated records. 500 

We then recalculated CTI for using confidence scores for each species, weighted by their abundance 

(also log(X+1) transformed), creating a CTI confidence score for each transect and each site. A mean 502 

site confidence score of >2.5 was used as a cut-off for many analyses and figures, as indicated in 

figure captions. Although a score of 2.5 can be achieved in many ways, this effectively represents at 504 

least 75% of the individuals present belonging to species with the maximum confidence score of 

three.  506 

 

Thermal guilds 508 
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Given few truly subtropical species were identified in this study, and this outcome could potentially 

result from bias in the distribution of sampling effort towards areas outside of subtropical locations 510 

(see Supplementary Information for more detail), we replicated Figure 2 along a comprehensively-

sampled latitudinal gradient in Australia. The majority of Australian species are well-sampled across 512 

their geographic distributions and numerous sites have been surveyed in subtropical locations in 

Australia. We divided the RLS data from 968 sites into 10o latitudinal bands along the east coast of 514 

Australia (and Papua New Guinea and Solomon Islands) from the equator to 43.7oS, and plotted 

histograms of thermal distribution midpoints of 1,105 species with a confidence of two or three (ED 516 

Fig 6). These clearly show very few species with midpoints of 23-24oC, even in the band from 20oS-

30oS where the mean annual SST of sites was 23.97oC. They also show the intrusion of numerous 518 

tropical species in temperate latitudes, particularly for fishes. 

 520 

Vulnerability predictions  

Vulnerability predictions required characterisation of the warmest temperatures experienced by 522 

species across their range. We re-constructed the thermal distributions for each species using 

maximum of the weekly mean SST from all occurrence sites over the 12 weeks prior to the sampling 524 

date, obtaining the 95th percentile of these. We then calculated the difference between this value 

and the mean of summer temperatures (the mean of the warmest 8 weeks was taken for each year 526 

between 2008 and 2014, with the mean of these used). This is analogous to a form of thermal safety 

margin, although in this case it does not mean a species cannot survive if the summer SST exceeds 528 

the 95th percentile, but rather that it has been recorded at very few sites in the combined RLS and 

GBIF databases at times in which the temperatures exceeded this value. 530 

We re-calculated this value for 10 years and 100 years from present, using rates of SST warming 

projected by coupled climate models’ CMIP5 PCP8.5 scenario, calculated and freely provided by the 532 
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NOAA Ocean Climate Change Web Portal (http://www.esrl.noaa.gov/psd/ipcc/ocn/). Sea surface 

temperature anomaly (difference in the mean climate in the future time period, 2050-2099, 534 

compared to the historical reference period, 1956-2005) was selected as the statistic representing 

the average of 25 models, interpolated to a 1° latitude by 1° longitude grid and matched to each RLS 536 

site. Summer SST was predicted for each RLS site for 10 and 100 year time periods using these 

values. Vulnerability was then estimated as the proportion of all species (fishes and invertebrates) 538 

recorded on each RLS survey that is expected to exceed the 95th percentile, based on the predicted 

SST at that site. This component of analyses did not incorporate abundance data, as the goal was to 540 

assess local species loss, rather than loss of individuals. Weighting by abundance had little influence 

on conclusions, however.  542 

Confidence scores were also recalculated without abundance (and thus represent the mean 

confidence of species present), and sites with confidence scores <2.5 were excluded from calculation 544 

of ecoregion means for all ecoregions with three or more sites with confidence >2.5. Twenty-one of 

81 ecoregions had fewer than three sites with confidence >2.5 with which to calculate means, so low 546 

confidence sites were included in means for these ecoregions. The effect of this is conservative, 

theoretically reducing thermal bias (see Supplementary Information), but the rationale was that 548 

ecoregion means would be more accurate through their inclusion than if heavily weighted by few 

sites. To provide an additional cut-off for ecoregions in which the overall mean confidence was still 550 

low, we excluded ecoregions with mean confidence <1.75. This resulted in the exclusion of six 

ecoregions (North and East Barents Sea, Oyashio Current, Agulhas Bank, Sea of Japan/East Sea, Gulf 552 

of Maine/Bay of Fundy, Malvinas/Falklands). 

To explore the contributions of warming rates and thermal bias to vulnerability predictions, we also 554 

recalculated CTI as the mean 95th percentiles of fish and invertebrate species recorded on transects 

(CTImax) and thermal bias (TBiasmax) as the difference between site-level CTImax and mean summer 556 

SST. TBiasmax can therefore be considered the sensitivity component of the vulnerability predictions, 
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based on recent mean summer SST and not accounting for warming rates (exposure). We applied 558 

GAMMs to assess vulnerability scores as a function of TBiasmax and warming rates, with ecoregion as 

a random factor (ED Table 2).  560 

Conclusions are robust to the warming data used, with qualitatively similar results using historical 

warming data from another source8, instead of future predictions (site warming rates in oC per 562 

decade taken from http://www.coastalwarming.com/data.html), and ecoregion mean vulnerability 

scores changing very little when the 99th percentile of species’ thermal distributions were used 564 

instead of the 95th percentile, even for 2115 predictions (Pearson correlation =0.97, P<0.01). 

 566 

 

Extended Data legends 568 

 

Extended Data Figure 1. Sites used in analyses at which fish and invertebrate communities were 570 

surveyed by the Reef Life Survey program. Numerous points are overlapping and hidden (n = 

2,447). Ecoregion boundaries are shown in grey lines. 572 

 

Extended Data Figure 2. Community Temperature Index (CTI) of reef fishes and invertebrates 574 

against mean annual sea surface temperature (SST). CTI calculated using abundance-weighted fish 

(a) and invertebrate (b) data, and including sites at which mean CTI confidence scores were less than 576 

2.5 (N= 2,447 and 2,383 for fishes and invertebrates, respectively). Sites are colour-coded by 

ecoregion to help distinguish spatial patterns, but as a result of numerous ecoregions (N=81), many 578 

ecoregion colours are similar. CTI calculated using presence-only fish (c) and invertebrate (d) data, 

http://www.coastalwarming.com/data.html
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and excluding sites with confidence scores <2.5 (N=2,188 and 1,812 for fishes and invertebrates, 580 

respectively). Dotted lines have a slope of one, plotted for comparison with data.  

 582 

Extended Data Figure 3. Global distribution of reef fish (a) and invertebrate (b) community 

thermal bias. Community thermal bias (oC) is the difference in abundance-weighted Community 584 

Temperature Index (CTI) from local long-term mean annual sea surface temperature. Positive 

regions (warm colours) encompass ecological communities with a predominance of individuals with 586 

warmer thermal affinity than mean local sea temperatures. Colours are scaled to the mean thermal 

bias of sites surveyed within each ecoregion (see Extended Data Table 1 for sample sizes). Only 588 

ecoregions with sites surveyed are included. 

 590 

Extended Data Figure 4. Frequency distribution of fish (a) and invertebrate (b) species’ latitudinal 

range midpoints. Species for which confidence in thermal distribution midpoints (and therefore 592 

geographical distribution midpoints) was low are excluded (see methods). 

 594 

Extended Data Figure 5. Frequency distribution of fish (left) and invertebrate (right) species’ 

thermal distribution midpoints in 10o latitudinal bands from Papua New Guinea down eastern 596 

Australia (rows). Note Y-axes are on different scales and only species with confidence scores of two 

and three are included (see methods). 598 
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Extended Data Figure 6. Frequency distribution of thermal distribution midpoints of species in 600 

major fish families spanning temperate and tropical zones. Note Y-axes are on different scales and 

only species with confidence scores of two and three are included. 602 

 

Extended Data Figure 7. Global distribution of TBiasmax of reef faunal communities. TBiasmax is 604 

calculated as the difference between CTImax (using the 95th percentiles of species’ thermal 

distributions and presence data) and mean summer SST. Colours are scaled to the mean TBiasmax of 606 

sites surveyed within each ecoregion (see Extended Data Table 1 for sample sizes). Only ecoregions 

in which quantitative surveys were undertaken are included. 608 

 

Extended Data Figure 8. The CTImax (mean 95th percentile of species thermal distributions) for reef 610 

faunal communities across temperate (blue), tropical (red) and subtropical (grey) sites. SST data 

are means of the warmest eight weeks of the year over the survey period (2008-2014). Points 612 

represent the surveyed community of fishes and invertebrates at each site (N=2,091, only 

confidence scores >2.5). Regression lines are fitted to the maximum values within each ecoregion, 614 

with separate regressions fitted for sites categorised from Figure 1 as temperate, tropical and 

subtropical.  616 

 

Extended Data Table 1. Ecoregion means, sample sizes and vulnerability predictions. The number 618 

of sites used in figures is the number of sites with confidence > 2.5, with number of sites with 

confidence <2.5 shown in brackets. An asterisk indicates that sites with confidence <2.5 were 620 

included in calculations of ecoregion means. Group identifies whether fauna surveyed at sites within 
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the ecoregion can be classified as temperate (TE), tropical (TR), sub-tropical (ST), sub-polar (SP), and 622 

temperate-subpolar transition (TE-SP) on the basis of CTI. 

 624 

Extended Data Table 2. GAMM results for Figure 3b and d. Proportion of species loss predicted by 

2025 and 2115 as a function of warming rate and TBiasmax. N=2,091 626 


