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a b s t r a c t

Benthic imagery is an effective tool for quantitative description of ecologically and economically
important benthic habitats and biota. The recent development of autonomous underwater vehicles
(AUVs) allows surveying of spatial scales that were previously unfeasible. However, an AUV collects a
large number of images, the scoring of which is time and labour intensive. There is a need to optimise the
way that subsamples of imagery are chosen and scored to gain meaningful inferences for ecological
monitoring studies. We examine the trade-off between the number of images selected within transects
and the number of random points scored within images on the percent cover of target biota, the typical
output of such monitoring programs. We also investigate the efficacy of various image selection ap-
proaches, such as systematic or random, on the bias and precision of cover estimates. We use simulated
biotas that have varying size, abundance and distributional patterns. We find that a relatively small
sampling effort is required to minimise bias. An increased precision for groups that are likely to be the
focus of monitoring programs is best gained through increasing the number of images sampled rather
than the number of points scored within images. For rare species, sampling using point count approaches
is unlikely to provide sufficient precision, and alternative sampling approaches may need to be
employed. The approach by which images are selected (simple random sampling, regularly spaced etc.)
had no discernible effect on mean and variance estimates, regardless of the distributional pattern of
biota. Field validation of our findings is provided through Monte Carlo resampling analysis of a previ-
ously scored benthic survey from temperate waters. We show that point count sampling approaches are
capable of providing relatively precise cover estimates for candidate groups that are not overly rare. The
amount of sampling required, in terms of both the number of images and number of points, varies with
the abundance, size and distributional pattern of target biota. Therefore, we advocate either the incor-
poration of prior knowledge or the use of baseline surveys to establish key properties of intended target
biota in the initial stages of monitoring programs.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Increasing human impacts on marine ecosystems heighten the
need for rapid and cost effective assessment and monitoring
methods (Halpern et al., 2008; Brown et al., 2011). Benthic habitats
play a vital ecological role and support fisheries with high economic
value (Hughes et al., 2005). Quantification of benthic habitats and
biota is necessary to better understand spatial patterns, monitor
changes and assess the impacts of management strategies (Molloy
et al., 2013). In this context, marine imagery collected by unmanned
arctic Studies, Private Bag 49,

. Perkins).
vehicles enables surveys of large areas, access to environments that
are difficult to survey such as deeper waters, and creates a per-
manent record that allows comparison over time (Dumas et al.,
2009). Photographic approaches yield high quality quantitative
information on benthic communities including species presence-
absence, direct counts of individuals or colonies, areal or percent
cover estimates, and estimates of size (Hill and Wilkinson, 2004;
Dumas et al., 2009; Trygonis and Sini, 2012). Recent technological
advances have facilitated the routine collection of increasingly
larger amounts of imagery, with some survey platforms able to
capture several thousand images over a few hours of deployment
(Pizarro et al., 2013). There is now a pressing need to assess the
statistical robustness and statistical efficiency of competing
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sampling approaches for extracting ecological data from the large
volumes of imagery produced.

One common use of marine imagery in large-scale ecological
surveys is the initial inventory and ongoing monitoring of key
groups or communities (Brown et al., 2004; Hill and Wilkinson,
2004; Smale et al., 2012). This typically involves the estimation of
the areal coverage of “visually conspicuous” (0.01e1.0 m diameter)
sessile benthic organisms or assemblages indicative of a particular
habitat, and measuring differences in this coverage between re-
gions or over time (Van Rein et al., 2009). A range of platforms have
been utilised for this type of work, including diver-swum transects
with hand-held cameras, the use of stills from towed camera sys-
tems, remotely operated vehicles (ROVs) and autonomous under-
water vehicles (AUVs). Techniques using SCUBA divers typically
employ multiple short transects (<50 m) and are restricted to
shallower depths (Brown et al., 2004; Leujak and Ormond, 2007).
Towed systems, ROVs and AUVs are capable of coveringmuch larger
areas, can operate at greater depths and return a large amount of
data in a relatively short time. For these reasons, technologies such
as these are more commonly employed when surveys are to cover
meso-scales (Van Rein et al., 2009). For example, an AUV has been
deployed as the platform of choice for the benthic surveying and
monitoring of a large number of sites around the Australian
coastline (Pizarro et al., 2013). Establishing the reliability of
coverage estimates in such large-scale projects is of crucial
importance from both scientific and economic standpoints.

The reliability of estimates is intrinsically linked to their preci-
sion (how variable one sample is from the next) and bias (the dif-
ference between the expected value of an estimator and the true
value of the parameter being estimated). Results of surveys, and
estimates of variability in particular, will not only be dependent
upon the natural variability in the biota but also dependent upon:
(i) the method used and effort spent on scoring each image, (ii) the
number of images selected from each transect and their method of
selection, (iii) the number of replicate transects used in an area, and
(iv) the length and design of the transects (Houk and Van Woesik,
2006). Survey approaches which provide greater precision mini-
mise the variation attributable to the sampling design and maxi-
mise the information about the biota. Issues surrounding survey
and transect design are dealt with by Foster et al. (2014). Here we
focus on the issues of subsampling imagery from transects and the
intensity with which individual images are scored.

When scoring individual images, percent cover is the most
commonmetric used to quantify benthic organisms (Van Rein et al.,
2011; Deter et al., 2012). Images are usually selected along a tran-
sect or within sites and arguably the most common approach is the
use of point count methodology, whereby the proportion of
randomly overlain points intersecting an organism or substratum is
used to calculate its coverage (Pielou, 1974). This approach has been
facilitated by the development of dedicated point-count software,
such as Coral Point Counts (CPC) (Kohler and Gill, 2006). The op-
timum number of points for scoring individual images (e.g. Dumas
et al., 2009; Deter et al., 2012), and the interplay between the
number of points per image and the number of images has been
well studied (e.g. Brown et al., 2004). However, attributes of bio-
logical organisms, such as size, abundance and spatial pattern may
also affect this trade-off, but have not been considered. Further,
different image selection approaches (e.g. random or systematic
sampling) within a transect will result in a different spatial spread
of samples, which may affect efficiency (or bias and variance),
particularly when the distribution of biota is clustered, yet a formal
assessment of these potential affects is lacking. We aim to take a
holistic approach by simultaneously examining the effect of both
attributes of the biota and sampling approaches on the accuracy
and precision of estimates of the precent cover of biota. Due to the
likelihood of a strong interplay between these factors, an approach
is required that allows an examination of the various trade-offs
simultaneously. We do this through the use of Monte Carlo simu-
lation and resampling approaches, which offer a flexible way to
vary these parameters, whilst comparing the outputs to known
percent covers, a quantity typically not known in real surveys (Bros
and Cowell, 1987).

We report findings on the interplay between: (i) the number of
images selected, (ii) the number of points used, and (iii) image
selection approach on estimates of the cover of biota of varying
spatial distribution and size classes. We use AUVs as a case study as
they have a number of features that make them an ideal platform
for benthic surveys in cross-shelf waters although other platforms
share many common issues with AUVs. In order to “ground truth”
the findings of our simulation we use Monte Carlo resampling
techniques on actual scored AUV imagery to analyse the implica-
tions of reducing the number of points scored per image. Through
analysis of simulated and actual benthic imagery we provide gen-
eral recommendations for the level of subsampling and scoring that
may be appropriate for scoring of marine benthic imagery.

2. Methods

2.1. Simulation methodology

As the basis for our simulation study, we used spatial scales of
deployment and transect designs that have been used in AUV de-
ployments under the government funded Integrated Marine
Observing System (IMOS) monitoring program in Australian shelf
waters (Barrett et al., 2010; Pizarro et al., 2013). All surveys for the
IMOS program were conducted using the AUV Sirius, an AUV
sampling platform designed by the Australian Centre for Field Ro-
botics (ACFR) at the University of Sydney (http://www.acfr.usyd.
edu.au/research/projects/subsea/auvSIRIUS.shtml).

Our simulation involved twomajor components: (i) the creation
of biological distributions within a virtual seascape, and (ii) the
sampling and subsampling of this distribution with various image
and point scoring approaches along an AUV transect.

2.2. Simulating the distribution of biota

To create the biological distributions, a sample frame of
400 � 800 m, that encompasses the approximate survey area that
has been used for AUV transects in the IMOS program, was estab-
lished. Within the sample frame a biological distribution was
created using either random or clustered spatial point patterns (see
Diggle, 1983), with points assigned one of three size classes and
abundances (Table 1).

Random biological distributions were simulated using a Poisson
process. Clustered distributions of biota are commonly observed in
ecological studies due to fine-scale biological and environmental
factors such as dispersal and habitat structure (Dormann et al.,
2007). Clustered distributions were simulated using a Neyman-
Scott clustering process (see Diggle, 1983). The intensity of the
processes were given values that resulted in percent covers that
were similar to those of organisms of interest in previously scored
data (see below). For the Neyman-Scott clustering processes, a
homogenous Poisson process was used to establish the ‘parent
points’. Each parent point spawned daughter points whose number
follows a Poisson distribution. These daughter points were spatially
distributed at a random angle and distance from the parent point.
We examined two different clustered processes: (i) Mildly clus-
tered: 10 daughter points, with the distance daughter points fell
from the parent being drawn from a random normal distribution
with a mean of zero and standard deviation of 5 and maximum
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Table 1
The biological distributions used in the simulation component of the study. The clustered process is a Neyman-Scott process where: Clustered1 has an offset distance of mean
zero, sd 5 m and a mean of 10 daughter points, and Clustered2 has an offset distance of mean zero, sd 3 m and a mean of 20 daughter points. For more details see Methods.

Biological distribution Size range Abundance Point pattern distribution

Large 25e80 cm diameter ~40% coverage Random
Large (mildly clustered) 25e80 cm diameter ~40% coverage Clustered 1

Large (clustered) 25e80 cm diameter ~40% coverage Clustered 2

Medium 10e25 cm diameter ~5% coverage Random
Medium (mildly clustered) 10e25 cm diameter ~5% coverage Clustered 1

Medium (clustered) 10e25 cm diameter ~5% coverage Clustered 1

Small 1e10 cm diameter ~0.1% coverage Random
Small (mildly clustered) 1e10 cm diameter ~0.1% coverage Clustered 1

Small (clustered) 1e10 cm diameter ~0.1% coverage Clustered 2
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radius of 20 m (ii) Clustered: 20 daughter points, with the distance
daughter points fell from the parent being drawn from a random
normal distribution with a mean zero, standard deviation of 3 and
maximum radius of 5 m. The number of parent points was varied to
allow the expectation of the percent cover created for equivalent
random and clustered processes to be kept equal for comparative
purposes.

A size class was assigned to each point pattern created: either
small (1 cme10 cm diameter), medium (10 cme25 cm diameter) or
large (25 cme80 cm diameter) to represent different sized biota. A
random uniform distribution of sizes was assigned to the points
within these specified limits. These size classes were chosen as they
were roughly analogous to the sizes of the organisms chosen for the
analysis of previously scored data (see below). Also, these sizes are
typical of benthic organisms that may be scored in AUV imagery.
2.3. Sampling of the biological distribution

The sampling component of the simulation involved generating
an ‘S’ shaped transect with a random start point within the sample
frame, applying one of three image selection approaches to images
along the transect, and then overlaying random points within the
images. The ‘S’ shaped transect (see Fig.1), consisted of three longer
sections of 500 m and two shorter sections of 150 m, giving a total
Fig. 1. Two realisations of biological distributions and image sampling strategies: (a) a rand
(b) a clustered biological distribution with a systematic image sampling strategy and 30 im
random points, with 3 points falling on the biota. Biota and image sizes are not shown to
transect length of 1.8 km. This design was chosen as it is a styl-
isation of a design that is currently widely employed for AUV sur-
veys around Australia (Williams et al., 2012). Random starting
points for the transects were included to simulate the difficulties in
precisely locating transects in the marine environment. For each
simulation a set of non-overlapping images (1.6 � 1.2 m -the
average size of an AUV image) was defined along the length of the
transect. Images were selected using a specified image sampling
methodology and number of images, and a specified number of
random points were overlaid within the image boundaries.

The ‘sampled’ percent cover for each image was determined as
the number of points that fell inside the biological pattern divided
by the total number of points used within the image. The mean
percent cover for the transect and the standard deviation of this
estimate was then determined by taking the average (and standard
deviation) of the image percent covers. The ‘sampled’ percent cover
could then be compared with the ‘true’ simulated cover. An illus-
tration of two potential distributions and image sampling ap-
proaches, as well as the within image point sampling is provided in
Fig. 1.

Calculation of the ‘true’ coverage of the biological distribution
over the survey area, which the point count was estimating, was
complicated by the fact that some members of the biological dis-
tribution had a degree of overlap. So, whilst the total area of all
om biological distribution with a random image sampling strategy and 30 images; and
ages. Panel (c) illustrates within image subsampling of medium-sized biota with 14

scale, and are used for illustrative purposes only.
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circles was known, the extent to which any adjacent circles over-
lapped reduced the total areal coverage in any particular simulated
distribution. Determining the exact area in each case of overlap is
empirically complicated, particularly in cases of multiple overlap
(for a discussion of the mathematical complications see Librino
et al., 2014). Therefore, it was necessary to calculate the ‘true’
cover by dividing up the sample frame into 80 rectangular slices,
each 10m� 400m. This was done due to the computational load of
calculating thewhole area at once, althoughwith higher computing
power this step may be unnecessary. Within each slice, point po-
sitions based on a set of 10,000 quasi-random numbers (Press,
2007) were generated and it was subsequently determined which
of these points fell within the simulated biota. True percent cover
could then be calculated by dividing the number of points that fell
inside the biota by the total number of points in the rectangular
slice. The proportions for each segment were totalled to give the
true percent coverage over the entire area. In test runs 10,000
points in each slice provided low levels of variance (coefficients of
variation <0.05) in true cover estimates.

2.4. Examining the trade-off between the number of images and
number of points

For each of the biological distributions outlined in Table 1, the
trade-off between the number of images (between 2 and 100 in
increments of 2) selected within a transect and the number of
points (between 1 and 50 in increments of 1) within an image on
the bias and precision of percent cover estimates was explored. In
order to keep results brief, for this component of the study we
chose to examine only systematic image sampling. Systematic
image sampling was used as this is the approach that has been used
in scoring real AUV transects in the IMOS program. Monte Carlo
simulations were conducted where a biological distribution was
created for each combination of pattern/abundance/size (Table 1),
and all sampling combinations of number of images and number of
points were tested over 200 runs, with random transect starting
points for each run. Therefore, there were a total of 2500 combi-
nations of number of images/number of points, tested for each of
the six biological distributions over 200 runs. This gave a total of
3,000,000 simulated data sets.

The trade-off between points per image and images was
assessed using the mean bias and the coefficient of variation
(CV ¼ standard deviation/mean), which were calculated for each
sampling regime over all simulations. Note that we use the means
and standard deviations of our proportion data, and do not trans-
form our data in any way.We also note that the point estimate from
taking the first moment (mean), as done here will coincide with
that obtained from maximum likelihood methods that are sug-
gested in Warton and Hui (2011). Thus, we avoid any potential
inference complications that are a consequence of transformations
(Warton and Hui, 2011). The mean bias was calculated as the dif-
ference between the ‘true cover’ and the ‘sampled cover’, the latter
from the point count methodology. As our biological distributions
had markedly differing mean coverages (Table 1), using CV pro-
vided a normalised measure of dispersion that allowed comparison
of the precision of different sampling approaches for the various
biological distributions. Lower CV values indicate more precise
estimates, and hencemore effective sampling. The resultant CVs for
all image/point combinations were plotted separately for each
biological distribution outlined in Table 1. These plots were used in
order to highlight how the number of images and the number of
points act in tandem in determining the precision of estimates.
Contour lines were added to these plots for CVs of 0.1 and 0.2 for
the large and medium categories. These CVs were chosen for
illustrative purposes as they represent relatively precise estimates
(equating to standard deviations within 10% and 20% of the mean
respectively). Actual levels of precision required for a monitoring
would be dependent on the question being addressed, such as the
level of power required to detect a change or the size of the change
to be detected. CVs of 0.1 and 0.2 fell outside the sampling intensity
used for the small-low category and a CV of 0.5 was used. Optimum
sampling regimes for the given AUV transect were determined by
summing the total number of points (i.e. number of images by
number of points) required to reach the 0.1, 0.2 and 0.5 CV
thresholds and calculating which combination gave the minimum
number of scored points.

2.5. Image selection approaches

When selecting images, consideration may need to be given to
issues such as the patchiness of the habitat and/or the spatial dis-
tribution of organisms of interest. In order to examine the effect of
image selection approach, we conducted a separate simulation that
tested three differing image selection approaches: random, sys-
tematic and a spatially balanced approach ‘Generalized Random
Tessellation Stratified ‘(GRTS, Stevens and Olsen, 2004) that has
been used in wildlife monitoring in the USA, with recent applica-
tion to marine ecosystems (Hill et al., 2014). We tested the effect of
these three approaches at varying image and point sampling in-
tensities for the medium (clustered) distribution (Table 1). We
chose this clustered pattern as it was expected that GRTS may
perform better for a distribution that had a spatial pattern as it has
been shown to provide a more efficient sampling design when a
spatial signal exists.

For this simulation, 500 Monte Carlo simulations were con-
ducted. Image selection intensities ranged from 20 to 100 by 20,
and point count intensities from 10 to 50 by 10. Both the mean bias
and standard error of the mean estimate were compared across the
image sampling approaches at all intensities. Mean bias was
calculated as the average of the difference between the calculated
and true covers for the particular sampling strategy across all runs.
Standard errors were calculated from the standard deviation of the
mean estimate over all runs. Standard errors rather than CVs were
used in this simulation, as only one biological pattern was used
with the same mean percentage cover over all simulations.

2.6. Monte Carlo resampling of previously scored data

Fourteen previously scored AUV transects from the East Tasman
Peninsula in Tasmania, Australia were used to analyse the effect of
altering the number of points per image used to estimate the cover
of several benthic taxa. This allowed an assessment of whether a
less intense sampling effort would still provide robust estimates, as
well as providing some ground-truthing for the simulation. These
transects were scored by selecting every 100th image and scoring
with 50 random points overlaid on the image using CPC software
(Kohler and Gill, 2006). Every 100th image equated to an average of
approximately 60 images per transect with a spacing of ~35 m
between images. Transects were originally scored to a detailed
“morphospecies” level, with each distinct morphotype being given
a unique classifier. These classifications were subsequently amal-
gamated into broader morphological groups under the CATAMI
classification system (Althaus et al., 2013), hereafter referred to as
“morphotypes”. The CATAMI system is a heirarchical classification
scheme designed specifically for marine imagery, which is based on
a combination of taxonomy and morphology.

Monte Carlo simulations were conducted in order to test the
effect of reducing the number of points per image scored on the
mean and standard deviation estimates of the percent cover of
selected morphotypes over each transect. The morphotypes
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selected for the analysis were: canopy forming brown algae, erect
branching sponges, simple massive sponges, cup sponges and
bramble coral and represent organisms with high to low percent
cover, respectively, over transects. Five representative transects
were selected to compare the results of our simulation study where
coverage of canopy algae was analogous to our large class, the three
sponge morphotypes to our medium class and bramble coral to our
small-low class.

1000 resampling simulations were run, calculating the percent
cover for each of these morphotypes when using all numbers of
points between 50 and 1. For each simulation the following steps
were taken: (i) a subsample of all potential number of points from 1
to 50 was made by taking a random sample with replacement from
the total of 50 points within each image; (ii) for each number of
points used, the percent cover of each of the selected morphotypes
was calculated for each image within the transect; and (iii) the
within image percent cover using each number of points was
averaged to give a percent cover for each selectedmorphotype over
the transect. Finally, over all simulations, the CV of the cover esti-
mates was calculated for each number of points used. We once
again use CV in order to allow us to compare the precision of es-
timates with vastly different means, and also to allow comparison
with our simulations results.

3. Results

3.1. Simulation results

For all distributions, once sampling exceeded approximately 30
images with 10 points, no systematic bias in mean estimates was
evident (see supplementary materials S1). This threshold was
higher for the clustered compared to the random distributions and
for organisms with lower abundance. At higher sampling in-
tensities, (e.g. those that gave CVs <0.2 for the large and medium
distributions and <0.5 for the small distributions e see below), bias
was typically <2% of the mean values.

For the large and medium distributions, increased precisionwas
achieved more rapidly by including more images in the sample
rather than increasing the number of points per image (Fig. 2). For
these distributions, Fig. 2 shows CVs decreasing more rapidly along
the images axis compared with the points axis. Overall, increased
sampling intensities (either more images or more points per image)
were required for distributions that have lower overall cover, and
for those with clustered distributions when compared to random
distributions with equivalent cover. For the large distributions, a
low number of points per image (<10) were required to gain precise
estimates (CV¼ 0.1) oncemore than approximately 30 images were
selected within the transects. For the medium distributions, in or-
der to achieve CV ¼ 0.1 a sufficiently high (>25e46) number of
points were required along with a large number of images (>90). A
CV of 0.2 could be achieved with a low number of points (<10)
provided a large number of images (>60e80) were included in the
sample. For the small-low distributions, both a high number of
images (>80e90) and points per image (>40) needed to be sampled
in order to reach a relatively low level of precision (CV ¼ 0.5). The
sampling intensity required to reach CV levels of 0.1 or 0.2 fell
outside of the bounds that we tested for the small-low
distributions.

Increased sampling was required (both the number of images
and number of points) with increased clustering in the distribu-
tions (Fig. 2). This effect was particularly noticeable for the medium
distribution, where the level of sampling required to reach a CV of
0.1 increased noticeably as the distribution became more clustered.

If it is assumed that an equal amount of time is required to score
each point then scoring the minimum number of points required to
achieve the desired CV also optimises the cost-benefit of scoring.
The ‘optimal’ combination of the number of images and points per
image required to reach CVs of 0.1 and 0.2 for the large andmedium
distributions are summarized in Table 2. For the small-low distri-
butions, sampling intensities close to the limit of those tested
needed to be employed to reach a CV ¼ 0.5, and hence results are
not displayed in Table 2.

The various image selection approaches performed equally well
in terms of the estimation of the standard error of the mean, and
levels of bias in mean estimates (Fig. 3). There was no evidence of
any image sampling approach providing better estimates at any
combination of number of images or number of points tested.

3.2. Monte Carlo resampling of previously scored data

Reducing the number of points used to score the cover of five
morphotypes across five representative transects gave remarkably
similar results to those of our simulation (Fig. 4). On average there
were approximately 60 images scored in each transect. To achieve a
CV of 0.1 required approximately 3 points per image for the canopy
algae (analogous to our large group). 15e20 points per image were
required for a CV of 0.2 for the spongemorphotypes (medium), and
achieving a CV of 0.1 was close to or beyond the limit of sampling.
For bramble coral (small), a CV of 0.5 was not achievable using all
images with 50 points. These results compare well with using 60
images in the Monte Carlo resampling to the plots in Fig. 2. Results
for all 14 transects studied are provided in the supplementary
materials S2 and show the number of points at which the stan-
dard deviation begins to asymptote in the representative transects.

4. Discussion

A rigorous evaluation of various survey and sampling method-
ologies is an important precursor to initiatingmonitoring programs
(Brown et al., 2004). Whilst such programs may have a variety of
end goals, if the sampling design utilised does not provide sufficient
accuracy (i.e. low bias and good precision) then inferences are
ambiguous at best (Miller and Ambrose, 2000). Here we provide
practical advice for those who intend to utilise benthic imagry for
broad-scale surveys and monitoring. Through the use of simulated
biological distributions that incorporate a range of size classes,
abundances and patterns we provide results that are generalizable
and can be applied in a wide range of settings. Furthermore, results
of our simulation are supported through Monte Carlo resampling
analysis of previously scored imagery, adding further evidence that
our results are applicable to real world benthic surveys. Our results
highlight the importance of taking into account the abundance, size
and distribution of target biota to be used in monitoring programs,
and hence the need for either incorporating prior knowledge or
conducting baseline surveys to establish these key properties prior
to determining sampling protocols.

This work builds on a growing body of literature that has
explored the issues surrounding sampling of marine benthic im-
agery (e.g. Brown et al., 2004; Leujak and Ormond, 2007; Molloy
et al., 2013). In particular, it adds weight to the evidence that for
broad-scale monitoring work it is more important to replicate
sampling at gross rather than finer scales by increasing the number
of images rather than points within images (Brown et al., 2004;
Houk and Van Woesik, 2006; Molloy et al., 2013). This is echoed
in Foster et al. (2014) who found that better survey designs were
those that evenly dispersed sampling effort (images and transects)
over environmental gradients in the survey area. We also found
that for our simulated distributions, the image sampling strategy
used did not confer any advantage in terms of the mean or standard
error of cover estimates. This result was unexpected as it was



Fig. 2. The relationship between the number of images, number of points and Coefficient of Variation (CV) for the nine simulated biological distributions. The colour scale rep-
resents the CV, with lower CVs representing more precise estimates. Reference contour lines are included, with blue crosses and corresponding numbers (images, points) indicate
the optimum sampling scenarios in terms of the minimum number of points needed to achieve the respective CVs. Images were selected systematically along the transect. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Optimum scoring in terms of the number of images and points per image used to obtain CV's of 0.1 and 0.2 for the large and medium distributions. Optimum scoring was
determined by calculating the minimum total number of points required to achieve the relevant CVs.

Biological distribution Optimum number of images/points (total) for CV ¼ 0.2 Optimum number of images/points (total) for CV ¼ 0.1

Large 28/1 (28) 88/2 (176)
Large (mildly clustered) 30/1 (30) 94/2 (188)
Large (clustered) 32/1 (32) 96/2 (192)
Medium 86/6 (516) 92/25 (2300)
Medium (mildly clustered) 60/8 (540) 92/30 (2760)
Medium (clustered) 82/7 (574) 95/46 (4370)
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anticipated that a spatially balanced design may outperform a
random design by more evenly sampling the area, particularly for
the clustered distributions.

4.1. Points versus images

Relatively few points per image were required for sampling
designs to exhibit little to no bias in estimates of biological groups
that have greater than 5% coverage across the survey area (i.e. our
medium and large groups). Similarly, Dumas et al. (2009) found
that varying the number of points per image between 9 and 99 had
little effect on bias in 20 m long transects where scored images
were contiguous along the entire length of the transect. We found
that this result also holds true for much longer transects and for a



Fig. 3. Comparison of (i) standard errors (SE) using different image sampling protocols: (a) systematic vs GRTS, (b) systematic vs SRS, and (c) GRTS vs SRS; and (ii) bias using (d)
systematic vs GRTS, (e) systematic vs SRS and (f) GRTS vs SRS. The biological distribution used was the medium (clustered) distribution. The number of images used range from 20 to
100 by 20, and the number of points per image from 10 to 50 by 10. Each point in the plots represents a unique combination of images and points. The lines in the SE plots represent
a one-to-one relationship.
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variety of spatial distributions. This shows that given adequate
sampling intensity for an organism of interest, the point count
approach is capable of providing unbiased estimates of percent
cover for a surveyed area.

We also found a general pattern that for the distributions that
could be sampled with a reasonably high precision (i.e. our large
Fig. 4. Relationship between the coefficient of variation (CV) and the number of points pe
Tasman Peninsula, Tasmania. Transects were scored by selecting every 100th image and scor
lightly dashed line represents a CV of 0.1. The crossing points of the CV lines with these dash
for that morphotypes within the representative transect.
and medium distributions), the optimum sampling strategy, in
terms of reducing bias and increasing precision, involved an
increased number of images rather than an increased number of
points per image. There is also support for our findings from a
number of other studies using marine benthic imagery, which have
found that spacing out and increasing sampling units, either images
r image used to score 5 “morphotypes” from 5 representative transects from the East
ing with 50 random overlaid points. The heavily dashed line represents a CV of 0.2. The
ed lines represents the number of points per image required to achieve the relevant CV
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within transects, or an increased number of transects over the
study region, shows improvements in the precision of estimates
(Brown et al., 2004; Ryan, 2004; Houk and Van Woesik, 2006;
Molloy et al., 2013). We expand on the findings of previous
studies by considering a range of biological characteristics of po-
tential organisms of interest. Our results hold for more abundant
groups (medium and large) regardless of whether their distribution
is clustered or not. Whilst Fig. 2 shows that a reasonably high
number of points (>25e46) were required to achieve a CV ¼ 0.1 for
the medium distributions, optimum samples were also at the high
end of the number of imageswe tested (>90 in all cases). The slopes
of the contour lines suggest that if an even larger number of images
was tested that optimum sampling in terms of the total number of
points scored would have favoured a larger number of images with
less points. Reliably precise estimates fell outside of the scope of
sampling that we tested for our small-low groups, and we were
therefore unable to test whether this pattern held true for rarer
organisms. Point count sampling approaches are unlikely to be
adequate for rare organisms, as evenwith a large number of images
or points within images, they will often be missed (Thompson,
2004).

By using the total number of points scored as our measure of
optimum sampling we have not taken into account the fact that
scoring more images may result in increases in scoring time as
opposed to scoring more points within an image. We anticipate
that this time would be minimal, particularly as software becomes
more powerful and user-friendly, although these assumptions
require further testing.

We note that, using simplifying assumptions, sampling theory
provides an algebraic solution for calculating the standard error of
the binomial proportion within an image (see Appendix). This
suggests that the number of points required to minimise error
within an image could be found algebraically, and would be
dependent on the proportion of space occupied by an organism
within an image. When generalising to multiple images however,
the simple form of this approach requires further assumptions,
such as independence (and identical distribution) of the percent
cover in an image. This assumption will not match reality for sys-
tematic sampling and GRTS methods, and also for biota with clus-
tered spatial distributions. We note that over-dispersion can be
incorporated into these algebraic expressions, through a hierar-
chical representation of the data generating mechanism (giving a
beta-binomial distribution), but this is a representation of mathe-
matical convenience and not of biological realism. While these
algebraic results may provide a workable solution for some re-
searchers in some circumstances, we believe that our results based
upon simulation of sampling outcomes for different distributions
provide more readily interpretable results, which are more bio-
logically believable and robust to unnecessary assumptions.

Whilst some studies have shown that a large number of points
per image (up to 100) may be needed to capture the diversity of
biota within an image (Van Rein et al., 2011; Deter et al., 2012), the
effects of increasing the number of images when estimating cover
of biota over an area is often not considered. For example, Deter
et al. (2012) found that a minimum of 64 points per image were
necessary to capture all recognisable features within an image.
However, such results are unlikely to be generalizable as they will
depend on factors such as the size of the organisms present and the
size of the image. While Van Rein et al. (2011) found that a higher
number of points per image (100) detected more taxa within the
image, they also showed that an increased number of images with
less points (25) was likely to increase the number of taxa recorded
per unit effort. Our simulation showed that at a reasonable level of
sampling intensity (greater than approximately 20 images with 5
points per image) even our small-low groups, which had coverage
of only 0.1%, were regularly detected within transects, albeit with
relatively high variance in estimates. When planning monitoring
programs it is therefore necessary to carefully consider the effects
of size, abundance and patterns of distribution on the precision of
estimates. We therefore advocate the use of baseline surveys to
establish these key properties of potential target biota, particularly
in previously unsurveyed areas.

4.2. Size, abundance and detecting change

With chronic disturbances such as climate change, long-term
fishing pressure, pollution and introduced species potentially
affecting many benthic communities, detecting the impacts these
disturbances have on the cover of organisms over time is often a
primary aim of monitoring programs (Bernstein and Zalinski, 1983;
Smale et al., 2012). Estimates of the cover of organisms with lower
abundances often have higher variances (Houk and Van Woesik,
2006; Smale et al., 2012). This will result in lower statistical po-
wer to detect change in the cover of such organisms unless surveys
include increased spatial and/or temporal replication. Therefore,
when considering candidate biota for long-term monitoring pro-
jects, the cover of that organism across the region of interest should
be considered in addition to their potential to respond to pressures.
For example Stoddart et al. (2005) found that the power to detect a
10% change in coverwas heavily dependent on the absolute cover of
coral at a site, with coverage greater than 60% at a site requiring
only 5 points per image, whereas when cover was less than 30% up
to 50 points per image may be required. Based on our simulation
and resampling analysis we would suggest that organisms that fall
in the range of sizes and abundances between our large (i.e.
25e80 cm diameter with 40% cover) and medium (i.e. 10e25 cm
diameter with 5% cover) classes are able to be sampled with point
count methods at a high enough precision for long-term moni-
toring projects. Organisms that fall into this category may be a
relatively small subset of the total pool of candidate morphotypes,
and pilot surveys made need to be conducted in order to determine
likely candidate species. For example, using the levels of sampling
employed in this study, the cover of only 4 morphotypes (the algal
and sponge morphotypes) out of 30 in our real world data set could
be estimated with a CV of 0.1.

In contrast, organisms that are small and have low abundance/
coverage across the study region (i.e. are rare) are unlikely to be
good candidates for long-term monitoring projects employing
point count methods. Where such organisms are the focus of sur-
veys, an alternative sampling strategy should be employed. For
example, image-level observations (e.g. presence-absence), which
do not require percentage estimates, or more intensive image and
point sampling protocols, stratified sampling based on known
covariates or some form of adaptive sampling (Thompson, 1996).
Conversely, our findings show that where large conspicuous or-
ganisms are the focus of monitoring effort, that low within image
sampling (2 points) will give reliable estimates provided a sufficient
number of images are used. This indicates that if such groups were
the sole focus of a survey that lower resolution methods may allow
much larger areas to be surveyed. For example, visibility permit-
ting, AUVs, ROVs or towed systems could be deployed at a higher
altitude off the bottom in order to characterise dominant macro-
algal groups in temperate waters or corals in tropical waters.

4.3. Patterns of distribution and sampling

Species are rarely dispersed uniformly in nature, and moni-
toring programs need to take this spatial heterogeneity into ac-
count (Pielou, 1974; Miller and Ambrose, 2000). Clumping of the
distribution of an organism within an area can result in an overall
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reduction in sampling precision (Andrew and Mapstone, 1987). In
some cases the sampling design may induce bias into the study's
results. For example, using systematic sampling (e.g. every nth
image) there is the possibility of confounding the sampling pattern
with spatial oscillations in the substrate or scales of distribution of
organisms (Ryan, 2004). For our simulation, we found a larger
sample size was required to achieve an equivalent level of accuracy
(i.e. bias e see supplementary materials S1) and precision (Fig. 2)
for all clustered distributions when compared to random distri-
butions with the same size and abundance. Herewe have simulated
three potential levels of clustering, and note that spatial patterns in
target organisms can have a strong influence on the level of sam-
pling required to reach high levels of precision. Our clusters are
distributed across our site, whereas in real benthic environments
clusters may be further restricted by environmental gradients or
habitat availability. Other studies of the marine benthos have
shown that there is often large variability in individual species
abundances over small scales (from centimetres to metres)
(Underwood et al., 2000; Ysebaert and Herman, 2002; Fraschetti et
al., 2005). Where possible, future studies and simulations should
incorporate distributional properties of their organisms of interest
based on realistic data gained from pilot studies.

For our simulated distributions none of the image sampling
protocols offered any relative advantage (Fig. 3). When systematic
trends exist in the distribution of biota then spatially balanced
image selection approaches such as GRTS may provide an advan-
tage. When prior knowledge exists of distinctly different sections
within a study site, stratification may provide another approach to
reduce spatial variability among sampling units (Andrew and
Mapstone, 1987). For example, this could involve the stratification
of sites into areas that contain dominant habitat forming groups
with high cover, and other areas and allocating sampling intensities
based on this stratification.

5. Conclusion

The use of imagery as a benthic survey tool is set to expand in
the future as novel technologies provide increasingly powerful
tools capable of conducting surveys over large areas in a relatively
short amount of time. This makes survey platforms such as AUVs
ideal candidates for broad-scale monitoring. Here we provide
practical advice to scientists and managers conducting such sur-
veys in terms of both sampling protocols necessary to give precise
estimates and also likely candidate species or groups for ongoing
monitoring. Our findings indicate that increases in precision over
transects can best be gained through a more even and compre-
hensive sampling of the area by including a larger number of im-
ages rather than sampling more points within images. Where no
prior information is available to stratify the sampling of images,
whether images are selected in a random, systematic or spatially
balanced manner is unlikely to affect estimates. These outcomes
are generalizable across a number of size classes, abundances and
distributions and are likely to hold true for broad-scale monitoring
surveys that focus on conspicuous functional groups which are not
too small and typically have cover greater than 5% over a site. We
suggest such groups should be focussed upon as candidates for
monitoring programs, as the sampling effort required to gain reli-
able estimates of their coverage is not likely to be overly onerous.
Target indicators that are dominant space occupiers in a system
may be effectively monitored at lower resolutions, by deploying
image capturing devices such as AUVs at higher altitudes allowing
greater spatial coverage. Patterns of distribution, in particular the
level of clustering of organisms of interest, will also be important in
determining the sampling intensity required. When establishing
long term monitoring programs, we would suggest that pilot
surveys should be conducted or expert knowledge incorporated in
order to determine the size, abundance and distribution of poten-
tial candidate groups. Our findings can then be utilised as a basis for
determining the likely range of image and point scoring protocols
for the ongoing monitoring of these groups.
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Appendix

An algebraic solution to binomial sampling of points within images

Let Xi be the number of points that fall on the organism of in-
terest in image i. Let k be the number of points on an image. Then
assume that Xi ~ Binomial(pi, k), which implies that EðXiÞ ¼ kpi and
VarðXiÞ ¼ kpið1� piÞ. Now, let bpi ¼ Xi

k , so that EðbpiÞ ¼ pi and
VarðbpiÞ ¼ 1

k pið1� piÞ. This gives the standard error for the pro-
portion within an image to be ðbpiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞ

k

q
.

An algebraic solution to binomial sampling of multiple images

Now, let Xi, i ¼ 1...N, be the number of points where there is a
‘success’ (i.e. a point falls on an organism of interest) in each of N
images. Each image has k points in total. Define the mean number
of ‘success’ points to be X ¼ 1

N
P

Xi and define the mean percent-
age cover to be bp ¼ 1

N
P Xi

k . For this work, we require an estimate of
the standard error of the mean percentage bp. Now,

VarðbpÞ ¼ 1

N2k2
Var

�X
Xi

�

¼ 1

N2k2
N VarðXiÞ;

¼ 1
Nk

pð1� pÞ; giving

SEðbpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nk

pð1� pÞ
r

Coefficient of variation plots predicted by the algebraic solution
are shown in the figure below. The algebraic solution can be seen to
provide a similar outcome to the simulated random distribution.
This is expected, as the algebraic solution makes the assumption
that observations across images are independent and identically
distributed, such as would occur under a random distribution. The
simple algebraic solution is likely to underestimate the sampling
required to reach a certain level of error where this assumption is
violated, such as when clustering occurs. In such cases, the addi-
tional variation not accounted for by the model results in over-
dispersion.



N.R. Perkins et al. / Estuarine, Coastal and Shelf Science 176 (2016) 36e46 45
Incorporating Over-dispersion

If there is over-dispersion, possibly due to clustering, and if that
over-dispersion can be encapsulated as a beta-binomial distribu-
tion, thenwe can assume that Xi � Beta Binomialðp; k; fÞwhere f

is an over-dispersion parameter so that Var
�
Xi
k

�
¼ m ð1� mÞ

k f,

which leads to (using the same argument as before) SE

ðbpÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fpð1�pÞ

Nk

q
.

This approach requires the specification of f, a quantity which
will vary between organisms and systems. The interpretation of
this parameter in relation to the observed biological distribution
may not be readily apparent to ecologists. For this reason we have
taken the simulation approach which relates sampling outcomes
directly to potential distributions in terms of size, abundance and
clustering.

Where simulation is not possible, or not immediately possible,
the algebraic approach may offer a useful minimum starting point
for survey design.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.ecss.2016.04.005.

References

Althaus, F., Hill, N.A., Rees, R., Jordan, A., Colquhuon, J., 2013. CATAMI standardised
classification scheme visual look-up guide. In: Edwards, L. (Ed.), Collaborative
and Automative Tools for Marine Imagery (CATAMI).

Andrew, N.L., Mapstone, B.D., 1987. Sampling and the description of spatial pattern
in marine ecology. Oceanogr. Mar. Biol. 25, 39e90.

Barrett, N., Seiler, J., Anderson, T., Williams, S.B., Nichol, S., Hill, N.A., 2010. Using an
autonomous underwater vehicle to inform management of biodiversity in shelf
waters. In: Proceedings of IEEE Oceans 2010. Sydney, Australia.

Bernstein, B.B., Zalinski, J., 1983. Optimum sampling design and power tests for
environmental biologists. J. Environ. Manag. 16, 35e43.

Bros, W.E., Cowell, B.C., 1987. A technique for optimizing sample-size (replication).
J. Exp. Mar. Biol. Ecol. 114, 63e71.
Brown, C.J., Smith, S.J., Lawton, P., Anderson, J.T., 2011. Benthic habitat mapping: a
review of progress towards improved understanding of the spatial ecology of
the seafloor using acoustic techniques. Estuar. Coast. Shelf Sci. 92, 502e520.

Brown, E., Cox, E., Jokiel, P., Rodgers, K., Smith, W., Tissot, B., Coles, S.L., Hultquist, J.,
2004. Development of benthic sampling methods for the coral reef assessment
and monitoring program (CRAMP) in Hawai'i. Pac. Sci. 58, 145e158.

Deter, J., Descamp, P., Boissery, P., Ballesta, L., Holon, F., 2012. A rapid photographic
method detects depth gradient in coralligenous assemblages. J. Exp. Mar. Biol.
Ecol. 418, 75e82.

Diggle, P.J., 1983. Statistical Analysis of Spatial Point Patterns. Academic Press,
London.

Dormann, C.F., McPherson, J.M., Araujo, M.B., Bivand, R., Bolliger, J., Carl, G.,
Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., Kuhn, I., Ohlemuller, R., Peres-
Neto, P.R., Reineking, B., Schroder, B., Schurr, F.M., Wilson, R., 2007. Methods to
account for spatial autocorrelation in the analysis of species distributional data:
a review. Ecography 30, 609e628.

Dumas, P., Bertaud, A., Peignon, C., Leopold, M., Pelletier, D., 2009. A “quick and
clean” photographic method for the description of coral reef habitats. J. Exp.
Mar. Biol. Ecol. 368, 161e168.

Foster, S.D., Hosack, G.R., Hill, N.A., Barrett, N.S., Lucieer, V.L., Spencer, M., 2014.
Choosing between strategies for designing surveys: autonomous underwater
vehicles. Methods Ecol. Evol. 5, 287e297.

Fraschetti, S., Terlizzi, A., Benedetti-Cecchi, L., 2005. Patterns of distribution of
marine assemblages from rocky shores: evidence of relevant scales of variation.
Mar. Ecol. Prog. Ser. 296, 13e29.

Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D'Agrosa, C.,
Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S.,
Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., Watson, R., 2008.
A global map of human impact on marine ecosystems. Science 319, 948e952.

Hill, J., Wilkinson, C., 2004. Methods for Ecological Monitoring of Coral Reefs. AIMS,
Townsville, QLD, p. 123.

Hill, N.A., Barrett, N., Lawrence, E., Hulls, J., Dambacher, J.M., Nichol, S., Williams, A.,
Hayes, K.R., 2014. Quantifying fish assemblages in large, offshore marine pro-
tected areas: an Australian case study. Plos One 9, e110831.

Houk, P., Van Woesik, R., 2006. Coral reef benthic video surveys facilitate long-term
monitoring in the commonwealth of the Northern Mariana Islands: toward an
optimal sampling strategy. Pac. Sci. 60, 177e189.

Hughes, T.P., Bellwood, D.R., Folke, C., Steneck, R.S., Wilson, J., 2005. New paradigms
for supporting the resilience of marine ecosystems. Trends Ecol. Evol. 20,
380e386.

Kohler, K.E., Gill, S.M., 2006. Coral Point Count with Excel extensions (CPCe): a
Visual Basic program for the determination of coral and substrate coverage
using random point count methodology. Comput. Geosci. 32, 1259e1269.

Leujak, W., Ormond, R.F.G., 2007. Comparative accuracy and efficiency of six coral
community survey methods. J. Exp. Mar. Biol. Ecol. 351, 168e187.

Librino, F., Levorato, M., Zorzi, M., 2014. An algorithmic solution for computing
circle intersection areas and its applications to wireless communications. Wirel.
Commun. Mob. Comput. 14, 1672e1690.

Miller, A.W., Ambrose, R.F., 2000. Sampling patchy distributions: comparison of

http://dx.doi.org/10.1016/j.ecss.2016.04.005
http://dx.doi.org/10.1016/j.ecss.2016.04.005
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref1
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref1
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref1
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref2
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref2
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref2
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref3
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref3
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref3
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref4
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref4
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref4
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref5
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref5
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref5
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref6
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref6
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref6
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref6
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref7
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref7
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref7
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref7
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref8
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref8
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref8
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref8
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref9
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref9
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref10
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref10
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref10
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref10
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref10
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref10
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref11
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref11
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref11
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref11
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref12
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref12
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref12
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref12
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref37
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref37
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref37
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref37
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref13
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref13
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref13
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref13
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref13
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref14
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref14
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref15
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref15
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref15
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref16
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref16
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref16
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref16
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref17
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref17
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref17
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref17
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref18
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref18
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref18
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref18
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref19
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref19
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref19
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref20
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref20
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref20
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref20
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref21


N.R. Perkins et al. / Estuarine, Coastal and Shelf Science 176 (2016) 36e4646
sampling designs in rocky intertidal habitats. Mar. Ecol. Prog. Ser. 196, 1e14.
Molloy, P.P., Evanson, M., Nellas, A.C., Rist, J.L., Marcus, J.E., Koldewey, H.J.,

Vincent, A.C.J., 2013. How much sampling does it take to detect trends in coral-
reef habitat using photoquadrat surveys? Aquat. Conserv. Mar. Freshw. Ecosyst.
23, 820e837.

Pielou, E.C., 1974. Population and Community Ecology: Principles and Methods.
Gordon and Breach Science Publishers, London.

Pizarro, O., Williams, S.B., Jakuba, M.V., Johnson-Roberson, M., Mahon, I., Bryson, M.,
Steinberg, D., Friedman, A., Dansereau, D., Nourani-Vatani, N., Bongiorno, D.,
Bewley, M., Bender, A., Ashan, N., Douillard, B., 2013. Benthic Monitoring with
Robotic Platforms-The Experience of Australia (Tokyo).

Press, W.H., 2007. Numerical recipes : the art of scientific computing/William H.
Press... [et al.], third ed. Cambridge University Press, New York.

Ryan, D.A.J., 2004. Point sampling strategies for estimating coverage from benthic
video transects. Environmetrics 15, 193e207.

Smale, D.A., Kendrick, G.A., Harvey, E.S., Langlois, T.J., Hovey, R.K., Van Niel, K.P.,
Waddington, K.I., Bellchambers, L.M., Pember, M.B., Babcock, R.C.,
Vanderklift, M.A., Thomson, D.P., Jakuba, M.V., Pizarro, O., Williams, S.B., 2012.
Regional-scale benthic monitoring for ecosystem-based fisheries management
(EBFM) using an autonomous underwater vehicle (AUV). ICES J. Mar. Sci. 69 (6).

Stevens, D.L., Olsen, A.R., 2004. Spatially balanced sampling of natural resources. J.
Amer. Stat. Assoc. 99 (465), 262e278.

Stoddart, J.A., Blakeway, D.R., Grey, K.A., Stoddart, S.E., 2005. Corals of the Dampier
Harbour: Their Survival and Reproduction during the Dredging Programs of
2004. MScience Pty Ltd, Perth WA, p. 78.
Thompson, S.K., 1996. Adaptive Sampling. Wiley.
Thompson, W.E., 2004. Sampling Rare or Elusive Species. Island Press.
Trygonis, V., Sini, M., 2012. photoQuad: a dedicated seabed image processing

software, and a comparative error analysis of four photoquadrat methods.
J. Exp. Mar. Biol. Ecol. 424e425, 99e108.

Underwood, A.J., Chapman, M.G., Connell, S.D., 2000. Observations in ecology: you
can't make progress on processes without understanding the patterns. J. Exp.
Mar. Biol. Ecol. 250.

Van Rein, H., Schoeman, D.S., Brown, C.J., Quinn, R., Breen, J., 2011. Development of
benthic monitoring methods using photoquadrats and scuba on heterogeneous
hard-substrata: a boulder-slope community case study. Aquat. Conserv. Mar.
Freshw. Ecosyst. 21, 676e689.

Van Rein, H.B., Brown, C.J., Quinn, R., Breen, J., 2009. A review of sublittoral
monitoring methods in temperate waters: a focus on scale. Underw. Technol.
28, 99e113.

Warton, D.I., Hui, F.K.C., 2011. The arcsine is asinine: the analysis of proportions in
ecology. Ecology 92, 3e10.

Williams, S.B., Pizarro, O.R., Jakuba, M.V., Johnson, C.R., Barrett, N.S., Babcock, R.C.,
Kendrick, G.A., Steinberg, P.D., Heyward, A.J., Doherty, P.J., Mahon, I., Johnson-
Roberson, M., Steinberg, D., Friedman, A., 2012. Monitoring of benthic reference
sites using an autonomous underwater vehicle. IEEE Robot. Autom. Mag. 19,
73e84.

Ysebaert, T., Herman, P.M.J., 2002. Spatial and temporal variation in benthic mac-
rofauna and relationships with environmental variables in an estuarine, inter-
tidal soft-sediment environment. Mar. Ecol. Prog. Ser. 244, 105e124.

http://refhub.elsevier.com/S0272-7714(16)30106-8/sref21
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref21
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref22
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref22
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref22
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref22
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref22
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref23
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref23
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref24
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref24
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref24
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref24
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref25
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref25
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref26
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref26
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref26
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref27
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref27
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref27
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref27
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref27
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref38
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref38
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref38
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref28
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref28
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref28
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref29
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref30
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref31
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref31
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref31
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref31
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref31
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref32
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref32
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref32
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref33
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref33
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref33
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref33
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref33
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref34
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref34
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref34
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref34
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref35
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref35
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref35
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref36
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref36
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref36
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref36
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref36
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref36
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref39
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref39
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref39
http://refhub.elsevier.com/S0272-7714(16)30106-8/sref39

	Image subsampling and point scoring approaches for large-scale marine benthic monitoring programs
	1. Introduction
	2. Methods
	2.1. Simulation methodology
	2.2. Simulating the distribution of biota
	2.3. Sampling of the biological distribution
	2.4. Examining the trade-off between the number of images and number of points
	2.5. Image selection approaches
	2.6. Monte Carlo resampling of previously scored data

	3. Results
	3.1. Simulation results
	3.2. Monte Carlo resampling of previously scored data

	4. Discussion
	4.1. Points versus images
	4.2. Size, abundance and detecting change
	4.3. Patterns of distribution and sampling

	5. Conclusion
	Acknowledgements
	Appendix
	An algebraic solution to binomial sampling of points within images
	An algebraic solution to binomial sampling of multiple images
	Incorporating Over-dispersion

	Appendix A. Supplementary data
	References


