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1 

Abstract 2 

 3 

1. Monitoring the impacts of pressures, such as climate change, on marine benthic 4 

ecosystems are of high conservation priority. Novel imaging technologies such as 5 

autonomous underwater vehicles (AUVs), remotely operated vehicles (ROVs) and 6 

towed systems now give researchers the ability to monitor benthic ecosystems over 7 

large spatial and temporal scales.  8 

2. The design of monitoring programmes that utilize such technologies is currently 9 

hindered by a lack of information about the typical abundance and spatial 10 

distributions of target indicators and the level of sampling required to detect changes. 11 

A further complicating factor is that these sampling platforms are often not able to be 12 

exactly relocated when conducting repeat surveys.  13 

3. How the spatial properties of benthic organisms influence estimates of cover given 14 

alternative designs that vary in the geolocation precision of transects and the sampling 15 

intensity of images is explored. A geostatistical modelling approach is used to 16 

quantify the spatial distribution of 20 key deep-water invertebrate species at a long-17 

term monitoring site. The parameter estimates from these models are then used to 18 

simulate repeat transects with geolocation error and different levels of sampling.  19 

4. Results suggest that species with short effective ranges (i.e., those with strong spatial 20 

dependence over relatively short distances) and large spatial variance, which suggests 21 

strong spatial dependence effects, will require greater sampling effort to achieve a 22 

given standard of precision.  23 

5. Spatial offsets of 2 metres, typical of an AUV, are unlikely to have dramatic impacts 24 

on the precision of estimates when sufficient images are sampled, but offsets of 10 25 
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metres that are typical of towed systems may require prohibitively high sampling 26 

effort for some species. These findings have important implications for benthic 27 

monitoring programmes and highlight the importance of considering the interaction 28 

between sampling design, the technical limitations of survey equipment and the 29 

spatial properties of indicator species. 30 

 31 

Keywords: AUV, benthic monitoring, geostatistical modelling, sampling design, species 32 

distributions  33 
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1. Introduction 34 

 35 

In marine ecosystems, benthic habitats play a key role, support important fisheries, and 36 

contain rare or threatened species (Hughes, Bellwood, Folke, Steneck, & Wilson, 2005). 37 

Furthermore, benthic ecosystems are under increasing pressure, in particular from 38 

anthropogenic sources such as climate change and fishing (Halpern et al., 2008). Monitoring 39 

changes to these ecosystems is therefore an essential step toward understanding the impacts 40 

of such pressures and informing management and policy decisions that aim to mitigate 41 

adverse impacts. Although monitoring and process-based understanding of dynamics in 42 

shallow waters is reasonably well established via scuba-based surveys and manipulative 43 

studies (e.g. Babcock et al., 2010; Molloy et al., 2013), the quantitative assessment of benthic 44 

ecosystems at greater depths (i.e. >30 m) is still in its infancy (Boavida, Assis, Reed, Serrão, 45 

& Gonçalves, 2015; Schlacher, Williams, Althaus, & Schlacher-Hoenlinger, 2010). Advances 46 

in digital imaging technologies are now beginning to address this knowledge gap. This 47 

imagery is typically acquired from platforms such as autonomous underwater vehicles 48 

(AUVs), remotely operated vehicles (ROVs), and imaging sleds that collect large volumes of 49 

high quality benthic imagery over broad scales (Beijbom et al., 2015; Williams et al., 2012). 50 

This imagery, and the ability to make repeated observations over time, now enables 51 

researchers to monitor temporal changes in deep-water benthic habitats and their associated 52 

biological populations.  53 

 54 

When the aim is to detect chronic impacts such as the effect of long-term fishing and climate 55 

change that occur over broad spatial scales, monitoring programme designs must involve 56 

multiple sites that span large geographical domains (Brown et al., 2011; Parmesan, Duarte, 57 

Poloczanska, Richardson, & Singer, 2011). Technologies such as AUVs and ROVs are 58 
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capable of operating over these scales, and programmes utilizing these platforms with 59 

transect based methods at multiple sites across regions have now been established (e.g. 60 

http://imos.org.au/auv.html, Whiteman et al. (2013) and Karpov et al. (2012)). Monitoring 61 

with sufficient statistical precision to effectively describe indicator abundance for any given 62 

site, and how it changes through time, for programmes operating over large scales is not a 63 

trivial task. The inherent spatial and temporal variability in biological systems, and the ability 64 

of the design of these programmes to meet monitoring objectives needs to be thoroughly 65 

assessed. 66 

 67 

Imagery-based surveys have hierarchical (nested) spatial scales: regional, sites, transects and 68 

images. For large-scale monitoring programmes, interest is typically directed at detecting 69 

change at a site, or across a network of sites within a region through time, and thus precise 70 

estimates at a site level are important for achieving high statistical power (Elston, Nevison, 71 

Scott, Sier, & Morecroft, 2011; Larsen, Kincaid, Jacobs, & Urquhart, 2001). At a site level, 72 

transect-based surveys must account for the interaction between sampling effort, the spatial 73 

accuracy of repeat surveys and the distributional properties of species (e.g. Molloy et al., 74 

2013; Perkins, Foster, Hill, & Barrett, 2016; Ryan & Heyward, 2003). Sampling design 75 

choices for benthic image-based deployments, and for all taxonomic units, include transect 76 

layout (Foster et al., 2014), the method and number of images selected, and the number of 77 

points used to score individual images (Brown et al., 2004; Leujak & Ormond, 2007). Ideally, 78 

sampling design should take the properties of indicators into account (Legendre et al., 2002); 79 

however, in comparison to shallow water systems, there is a lack of detailed information 80 

regarding the distribution, abundance and patchiness of benthic organisms. For continental 81 

shelf ecosystems beyond scuba diving depths, researchers are finding that diversity is often 82 

high and there is a lack of dominant space occupiers, and hence many potential indicators are 83 
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likely to have low cover due to their relatively small size and/or sparse distribution (Monk et 84 

al., 2016; Schlacher et al., 2007; Williams, Althaus, & Schlacher, 2015). In addition, the 85 

technical difficulties associated with surveying deep-water benthic habitats means that it may 86 

not always be possible for repeat transects that cover these reef systems to exactly sample the 87 

same image locations on every successive deployment. The final choice of a particular 88 

indicator relies on many factors that relate to the specific objectives of particular monitoring 89 

programmes. However, such choices must also take into account the combination of potential 90 

low overall cover, the spatial attributes of a species’ distribution, and transect geolocation 91 

precision. These latter factors may have important consequences for the ability of monitoring 92 

programmes to detect change in a particular choice of indicator.  93 

 94 

Previous research has shown that for short (10 – 50 m) straight-line benthic transects, the 95 

accurate retracing of marked transects can dramatically increase the precision of estimates 96 

and the ability to detect change (Brown et al., 2004; Ryan & Heyward, 2003; van der Meer, 97 

1997); however, surveys by platforms such as AUVs, ROVs or imaging sleds are often 98 

conducted over larger scales, often with survey designs that are not simple straight-line 99 

transects, and in these situations marking transects is problematic (Pizarro et al., 2013; Van 100 

Rein, Brown, Quinn, & Breen, 2009). For example, Huvenne et al. (2016) note the difficulty 101 

in navigating precise repeat transect lines with these technologies in deep water. AUVs with 102 

their on-board sensors may offer some advantages for repeat surveys, with pre-programmed 103 

flight paths that are conducted with mean repeat geolocation precision of 1-2 m (unpublished 104 

data), whereas other potential survey platforms are likely to have repeat geolocation precision 105 

of tens of metres, dependent on water depth (Williams et al., 2015). The distance at which an 106 

offset transect will degrade survey outcomes is currently unclear, and this threshold distance 107 

will be inextricably linked to the spatial properties of the chosen indicator organisms. 108 
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 109 

The influence of the spatial properties of organisms and the effect of spatial autocorrelation 110 

on survey outcomes is being increasingly recognized (Andrew & Mapstone, 1987; Legendre, 111 

1993; Tobin, 2004). Auto-correlated data that arises from spatial dependence are likely 112 

commonplace when sampling biological systems, and failure to account for this 113 

autocorrelation can lead to erroneous statistical conclusions and deflated estimates of 114 

uncertainty (Horne & Schneider, 1995). Conversely, prior knowledge of the spatial properties 115 

of indicators, when available, can be used to improve sampling designs and survey outcomes 116 

(Legendre et al., 2002). Here, a geostatistical modelling approach (e.g. Diggle & Ribeiro, 117 

2007) is used to quantify spatial patterns in species distributions at a deep-water monitoring 118 

site. The models explicitly account for spatial autocorrelation, and the statistical descriptions 119 

of spatial distributions they provide allow the comparison of spatial properties across 120 

different organisms and systems. In this context, two important parameters are particularly 121 

useful in the statistical description of spatial patterns: the spatial variance and the range. The 122 

range describes how spatial dependence (or spatial correlation) decays with distance and is 123 

often quantified as the “practical” or “effective” range, which is the distance at which the 124 

correlation between observations is less than 0.1 (Lindgren, Rue, & Lindstrom, 2011); the 125 

spatial variance determines the magnitude of variability at a given distance (Banerjee, Carlin, 126 

& Gelfand, 2004). The parameter estimates for the intercept (i.e., mean cover), spatial range 127 

and variance from the models are used to evaluate how offset repeat transects and different 128 

levels of sampling effort impact both the precision of estimates of cover for monitoring 129 

targets and the ability to detect changes in cover through time.  130 

 131 

This study investigates: (1) the spatial properties of typical deep-reef sessile invertebrates, (2) 132 

how these influence the geolocation precision required for repeat surveys, and (3) the level of 133 
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image sampling necessary to achieve effective benthic monitoring programmes for typical 134 

species of interest. The distributional properties of 20 deep-water sessile species (potential 135 

indicators) are investigated across a long-term survey site. Geostatistical models, which are 136 

conditioned on the observed imagery data, are used to predict how the spatial properties of 137 

these species affect the precision of cover estimates and the ability to detect change. This is 138 

achieved by simulating repeat transects with varying geolocation inaccuracies and differing 139 

image sampling scenarios across the modelled spatial surface. The simulations incorporate 140 

the breadth of likely distributional parameters for each species. In this way, results are 141 

provided that incorporate a wide range of potential distributions, and develop 142 

recommendations that are likely to be valid across a wide variety of benthic ecosystems.  143 

  144 
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2. Materials and methods 145 

 146 

2.1 Data collection 147 

 148 

The study site chosen for analyses is a deep-water reef located off the east coast of Tasmania, 149 

Australia within the Freycinet Australian Marine Park (Figure 1) and is part of a long-term 150 

monitoring programme within the Integrated Marine Observing System (IMOS) programme 151 

(see http://imos.org.au/). The goals of this program include examining the impacts of large-152 

scale processes across a network of sites. Assessing the survey precision necessary to detect 153 

change at an individual site that can be detected is an important first step. To test this ability, 154 

a transect conducted on the 13th June, 2014 is used as the basis for analysis. A transect is 155 

defined here as the continuous path navigated by the AUV (Figure. 1). The transect surveyed 156 

benthic sessile invertebrate fauna associated with a granite reef outcrop at 60-85 m depth. 157 

The total length covered by the transect was approximately 3500 m. The AUV’s on-board 158 

sensors maintained a relatively constant altitude of approximately 2 m above the reef during 159 

the survey resulting in an image footprint of approximately 1.6 x 1.3 m (~ 2 m2), allowing 160 

consistent identification of distinctive biota within the acquired imagery.  161 

 162 

A subset of 20 ‘morphospecies’ (see Supplementary Materials for example photos and a brief 163 

description of each) were selected as model potential indicator species for this reef system. 164 

The three selection criteria were as follows: (i) the morphospecies were distinctive and easily 165 

identifiable within imagery, (ii) the morphospecies had a wide latitudinal gradient of 166 

distribution known from prior image-based analyses conducted elsewhere on the east coast of 167 

Australia, and hence were potentially useful indicators at greater spatial scales, and (iii) initial 168 

investigation showed these morphospecies to be the most abundant at the study site. This last 169 
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criterion is important because most of the morphospecies across the region have relatively 170 

low cover (unpublished data), and only the more abundant species are likely to be suitable as 171 

indicators due to the sampling effort required to quantify rare species over time (Skalski, 172 

2012). Morphospecies here refers to groups identified from imagery that have 173 

characteristically different morphologies and/or colours than others within the same 174 

taxonomic grouping. They are assumed to represent species, but were not officially 175 

taxonomically identified as no physical samples were taken. This approach is commonly 176 

taken in studies that utilize benthic imagery (e.g. James, Marzloff, Barrett, Friedman, & 177 

Johnson, 2017 ; Schlacher et al., 2010; Williams, Althaus, Barker, Kloser, & Keith, 2007) 178 

and has proven useful for characterizing benthic communities and detecting change 179 

(Brind'Amour et al., 2014). Hereafter these morphospecies will be referred to as “species”. 180 

The 20 species chosen were all sessile invertebrate fauna which are typically found in depths 181 

greater than 30 metres, below the zone dominated by macroalgae across the region studied 182 

(Shepherd & Edgar, 2013).  183 

 184 

Detailed scoring of the AUV imagery was conducted to quantify the percentage cover and 185 

distribution of the 20 species. All images that were completely sand were excluded from the 186 

analysis because all of the selected species are reef-associated species. Due to the velocity of 187 

the AUV and the frame rate of the imagery collected, adjacent images typically overlap. 188 

Therefore, every fifth image (giving 622 images) along the transect was selected to give 189 

essentially continuous, but not overlapping, image coverage. Transect Measure software 190 

(http://www.seagis.com.au/transect.html) was then used to score the selected images. Fifty 191 

random points were placed on each image and the number that fell on any one of the 20 192 

species was recorded. Fifty points typically gives relatively high precision in cover estimates 193 
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for an image (Perkins et al., 2016) and this is the number of points commonly used for 194 

scoring AUV imagery within the IMOS AUV program. 195 

 196 

2.2 Geostatistical modelling  197 

 198 

A model-based geostatistical analysis was used to examine the spatial properties of each 199 

species (e.g. Diggle & Ribeiro, 2007). The model used was a spatial Bayesian binomial 200 

regression model with a logit link function: 201 

 202 

(1) 𝑦𝑦(𝑠𝑠𝑖𝑖, 𝑐𝑐) ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝(𝑠𝑠𝑖𝑖, 𝑐𝑐)) 203 

(2) 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑝𝑝(𝑠𝑠𝑖𝑖,𝑐𝑐)
1− 𝑝𝑝(𝑠𝑠𝑖𝑖,𝑐𝑐) 

� =  𝛼𝛼𝑐𝑐 + 𝑧𝑧(𝑠𝑠𝑖𝑖, 𝑐𝑐) 204 

(3) 𝑧𝑧(𝑠𝑠𝑖𝑖, 𝑐𝑐) ~ 𝑁𝑁(0, Σ(𝜌𝜌𝑐𝑐,𝜎𝜎𝑐𝑐2)) 205 

(4) 𝛼𝛼𝑐𝑐 ~ 𝑁𝑁(0, 𝑏𝑏𝛼𝛼2) 206 

(5) 𝑙𝑙𝑙𝑙𝑙𝑙𝜌𝜌𝑐𝑐 ~ 𝑁𝑁(𝑎𝑎𝜌𝜌, 𝑏𝑏𝜌𝜌2) 207 

(6) 𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎𝑐𝑐 ~ 𝑁𝑁(𝑎𝑎𝜎𝜎,𝑏𝑏𝜎𝜎2) 208 

where 𝑦𝑦(𝑠𝑠𝑖𝑖, 𝑐𝑐) is the number of points in an image at location 𝑠𝑠𝑖𝑖 where species 𝑐𝑐 is observed 209 

out of a total of 𝑛𝑛 = 50 points, 𝑝𝑝(𝑠𝑠𝑖𝑖, 𝑐𝑐) is the estimated percentage cover of species 𝑐𝑐 at 210 

location 𝑠𝑠𝑖𝑖 with i indexing the image location, 𝛼𝛼𝑐𝑐 is the intercept for species 𝑐𝑐, and 𝑧𝑧(𝑠𝑠𝑖𝑖, 𝑐𝑐) is 211 

the latent spatial random field whose autocorrelation is governed by a Matérn covariance 212 

function (see details in Appendix) with autocorrelation parameter 𝜌𝜌𝑐𝑐, and spatial variance 𝜎𝜎𝑐𝑐2. 213 

Equations (5) and (6) complete the Bayesian model and values with hyperparameters 𝑎𝑎𝜌𝜌,𝑏𝑏𝜌𝜌2 214 

and 𝑎𝑎𝜎𝜎 , 𝑏𝑏𝜎𝜎2 are given in the Appendix. Informally, the hyperparameters are chosen so that the 215 

effective spatial range is in the order of tens of metres. The inclusion of the spatial 216 

dependence terms allow for the existence of missing covariates by directly addressing spatial 217 
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autocorrelation (Banerjee et al., 2004; Barry & Elith, 2006; Legendre, 1993). The model 218 

reflects the current state of knowledge that could be used in designing a monitoring plan. 219 

 220 

Estimation of model parameters and prediction was conducted by using the Integrated Nested 221 

Laplace Approximation (INLA) method (Rue, Martino, & Chopin, 2009). The INLA 222 

approach to estimation of a Bayesian model utilizes an analytical approximation to the 223 

parameters’ posterior distribution. The spatial model is represented in INLA by using a 224 

discrete spatial random process approximation for the (continuous) latent spatial random field 225 

𝑧𝑧 (i.e. a Gaussian Markov random field; Blangiardo & Cameletti, 2015; Lindgren et al., 226 

2011). 227 

 228 

For each of the 20 species, 5000 sample draws of the parameters were taken from the INLA 229 

analytical approximation to the posterior distribution. These posterior samples were used to 230 

quantify the characteristics of the species in the simulation study described below. 231 

 232 

2.3 Simulation of repeat transects and image sampling intensities 233 

 234 

To examine the effectiveness of attempting to conduct repeat surveys for the 20 species, the 235 

posterior samples of the parameters were used to simulate spatial surfaces on to which 236 

random repeat transects were overlaid. The differences in the mean estimate of the cover of 237 

each species were calculated for simulated repeat transects located at varying offsets from the 238 

original transect location, and various image sampling intensities. The offset distances 239 

between the original and simulated transects were: 0.5, 1, 2, 4, 8, 16, 32, 64, 128 metres. This 240 

represents a wide range of spatial offsets that span the range of re-deployment precisions that 241 

are expected for benthic survey platforms, extending from AUVs (most accurate method) to 242 
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towed video (least accurate method). The effect of including a different number of sampled 243 

images by varying a systematic sample along the transect was explored. Image sampling 244 

intensities tested were every 5th (622 images), 20th (156 images), 50th (62 images), 100th (31 245 

images) and 200th image (16 images). These sampling intensities correspond to sampling 246 

approximately every 2, 10, 20, 40 and 80 m along the transect.  247 

 248 

The simulation approach consisted of the following steps for each of the 5000 posterior 249 

samples of parameters available for each species: 250 

Step 1. Generate a set of image locations that represented a repeated transect, with: (i) 251 

a specified offset distance and random angle of deflection from the original transect 252 

image locations, and (ii) a specified systematic image sampling intensity with a 253 

random starting point along the transect. 254 

Step 2. Generate a stationary Gaussian random field (GRF) at all image locations 255 

using a random multivariate normal distribution with mean zero and a covariance 256 

matrix created using the sampled parameter values and distances generated in step 1. 257 

Step 3. GRF values were added to the sampled intercept parameter value to determine 258 

the log-odds of presence at any given image location (see equation 2 above). This 259 

value was then inverse-logit transformed and used to calculate the probability 𝑝𝑝(𝑠𝑠𝑖𝑖, 𝑐𝑐), 260 

of a point landing on a particular species within the given image. A binomial random 261 

variable was then generated for 𝑦𝑦(𝑠𝑠𝑖𝑖, 𝑐𝑐). That is, 𝑦𝑦(𝑠𝑠𝑖𝑖, 𝑐𝑐) is the number of points out 262 

of 50 that fell on a particular species within a given image, see equation (1). 263 

Step 4. The percentage cover estimate for both the original transect and repeat transect 264 

were then calculated as the mean of the image percentage covers, where the image 265 

percentage cover was estimated by the number of ‘hits’ divided by 50. The difference 266 

between these cover estimates was stored for each simulation. 267 
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 268 

Steps 1-4 were completed for each of the 5000 joint parameter posterior draws for each of the 269 

20 species. The precision of repeat transects was quantified by examining the variability 270 

across simulation runs between a transect with full image sampling in the original position 271 

compared to spatially offset transects with different levels of image sampling. Formally, this 272 

was calculated as the difference in the coefficient of variation (delta CV; the standard error 273 

divided by the mean) of the percentage cover estimates from a transect in the original 274 

position with all images sampled (every 5thimage) compared to the offset transects with 275 

varying image sampling intensities over the simulation runs. A smaller delta CV indicates 276 

more precise estimates in cover between the two sampling occasions. Change in CV was 277 

chosen as the metric to quantify precision, as it allows a unitless measure of precision that 278 

accounts for differing mean covers.  279 

 280 

2.4 Change detection simulations 281 

 282 

To examine if transects with different offsets and image sampling schemes were able to 283 

detect temporal change, a halving in the odds of presence was simulated for each species. A 284 

halving in the odds of presence was chosen as an example scenario as many of the species are 285 

expected to decline in cover across this region with ongoing climate change (see Perkins, 286 

Foster, Hill, Marzloff, & Barrett, 2017). A change in the odds of presence was the natural 287 

choice as the model was binomial with a logit link function. Two offsets (2 metres and 10 288 

metres, indicative of typical AUV redeployment accuracy and a best-case scenario for towed 289 

video respectively) and four image sampling intensities (every 5th, 20th, 50th and 100th image) 290 

were explored. Image sampling represents a range of image sampling from every non-291 
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overlapping image (every 5th) to the level of sampling that has been previously employed in 292 

scoring AUV imagery within the IMOS programme (every 100th).  293 

 294 

Again the INLA approach was used. Steps 1 and 2 from above were repeated with the same 295 

model parameters and priors as outlined above. At step 3, a halving in the odds of presence 296 

was induced for the repeat transect. A halving of the odds of presence approximately 297 

corresponds to a 50% decrease in the probability of presence of a species within any given 298 

image when percentage covers are less than 5% (i.e. for all the species considered in this 299 

study). A new INLA model was fitted to the combined data set of original and offset transect 300 

data, including a binary factor coded 0 for the original transect and 1 for the repeat transect, 301 

termed here as the ‘temporal effect’. This time 1000 posterior sample draws were used, and 302 

the posterior distribution of the temporal effect was recorded for each set of posterior 303 

samples. One thousand samples were used for this portion of the study due to the 304 

computational load involved in estimating a large number of models. For each sample drawn 305 

from the posterior, the probability that the temporal effect was less than zero was estimated. 306 

These estimated probabilities of a negative temporal effect were averaged over the 1000 307 

posterior sample draws. The resulting mean is reported as the probability of detection of 308 

temporal decline.  309 

310 
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3. Results 311 

 312 

3.1 Data summary and model parameter estimates 313 

 314 

Percentage covers for the 20 species were very low, despite a number of them being present 315 

in a relatively high proportion of the imagery (Table 1). The majority of species had 316 

distributions that exhibited high levels of spatial dependence, with short effective ranges 317 

(Table 1, Figure 2), indicating spatial autocorrelation over small spatial scales. Of the 20 318 

species modelled, 11 had mean effective ranges of less than 5 metres, and only six had mean 319 

effective ranges greater than 20 metres. The posterior distributions of the range for all 20 320 

species are shown in Figure 2.  321 

 322 

The estimates of spatial variance for each species encompassed a wide variety of values 323 

(Table 1), and when considered in combination with the effective range for an individual 324 

species, provided a useful quantitative description of the spatial distribution of species across 325 

the site. Species that occurred in a relatively large proportion of images (i.e. > 20% of 326 

images, e.g. Gorgonian sp., Erect sponge sp. 3, Massive sponge sp. 1 – see Table 1) tended to 327 

have lower spatial variance than those that had lower cover (e.g. Black coral sp. and Cup 328 

sponge sp. 5 – see Table 1), particularly when those species with low overall cover had a few 329 

images with higher cover (e.g. Black coral sp. – see also Figure 3 a). Species with shorter 330 

effective ranges, and lower spatial variance tended to occur in smaller clusters that were 331 

relatively evenly distributed over the transect (e.g. Erect sponge sp. 3 – see Figure 3 a). 332 

 333 

3.2 Simulation of offset transects 334 

 335 
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Results are presented for six species that are representative of the spectrum of effective 336 

ranges, spatial variances and cover of all 20 species. Results for the remaining species can be 337 

found in the Supplementary Materials. The distributions of these six species across the 338 

original transects based on the empirical data are shown in Figure 3a. The estimated posterior 339 

mean and 95% credible intervals of the mean differences in the estimated percentage cover 340 

are shown in Figure 3b. This bias (i.e. mean difference) for the estimated percentage cover 341 

between the original and offset transects was smallest at small offsets (<4 m). The posterior 342 

estimate of the mean difference tended to be small and no consistent pattern of over or under 343 

estimation of percentage cover was observed for any species. In contrast, credible intervals of 344 

the mean difference expanded more rapidly with offset distance for species with short ranges 345 

(e.g. Erect sponge sp. 3, Black coral sp. and Erect sponge sp. 1 – Figure 3b), and more slowly 346 

for species with longer ranges (e.g. Gorgonian sp. and Laminar sponge sp. 2 – Figure 3b). 347 

The increasing width of the credible intervals demonstrates greater uncertainty in the mean 348 

difference with increasing offset distances. 349 

 350 

The precision of estimates between repeat transects was associated with the spatial variance 351 

of each species (Figure 4 and Table 1). Ideally, the difference in CV (i.e. delta CV) between 352 

repeat transects should be zero (i.e. a high precision), and hence the greater the delta CV the 353 

less precise are the estimates of cover. Cover estimates for offset transects were less precise 354 

for species with larger spatial variances (e.g. Black coral sp., Cup sponge sp. 5, Erect sponge 355 

sp. 1 - Table 1). 356 

 357 

All species showed a consistent pattern of increased delta CVs between transect estimates 358 

with increased offset distances, with the major differences being the distance at which delta 359 

CVs approached an asymptote (Figures 4 and 5). The estimated delta CV reached an 360 
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asymptote at longer offset distances for species with longer range parameters (e.g. Gorgonian 361 

sp. and Cup sponge sp. 5) compared to those with shorter range parameters. Species with 362 

short range parameters (e.g. Black coral sp., Erect sponge sp. 1 and Erect sponge sp. 3) 363 

generally reached the asymptote within a 10 metre offset distance. The exception to this 364 

pattern was Laminar sponge sp. 2 which showed an erratic relationship with offset distance. 365 

This species was rare within the sample, with very low coverage (see Table 1). 366 

 367 

3.3 Simulation of offset transects with different image sampling intensities 368 

 369 

The delta CV of cover estimates unsurprisingly decreased with sampling intensity; however, 370 

the rate at which delta CV decreased (see Figure 5 and S1 Supplementary Materials) was 371 

particularly dependent on the effective range, and to a lesser extent the spatial variance of 372 

each species. This effect was most pronounced for the species with shorter ranges (Black 373 

coral sp., Erect sponge sp. 1, Erect sponge sp. 3), which all showed a greater decreases in 374 

delta CVs with increased image sampling than those with longer ranges ( e.g. Gorgonian sp. 375 

and Cup sponge sp. 5).  376 

 377 

3.4 Probability of detecting a decrease in the cover of target species  378 

 379 

The difference between a 2 and 10 metre offset in repeat transects had a large effect on the 380 

probability of detecting the ~50 % simulated decrease in the cover for species with high 381 

spatial variance and short ranges (e.g. Black coral sp., Erect sponge sp. 1, Cup sponge sp. 1, 382 

Cup sponge sp. 2; Table 1, Figure 6 and S2 Supplementary Materials) at equivalent levels of 383 

sampling.  384 

 385 
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The image sampling intensity was an important factor determining the probability to detect 386 

the simulated change, with sampling every 5th image providing >80% probability of detecting 387 

change for 17 out of the 20 species regardless of the offset distance. The three species for 388 

which 80% probability of detection (of temporal decline) could not be achieved were the 389 

three species with the lowest abundance (Laminar sponge sp. 2 – Figure 6; Massive sponge 390 

sp. 4 and Laminar sponge sp. 3 S2 Supplementary Materials).  391 

 392 

The effect of the geolocation error became more apparent with decreased image sampling 393 

intensity. For example, sampling every 20th image provided >80% detection probability of 394 

temporal decline for 17 out of 20 species with a 2 m offset, but only 13 out of 20 species with 395 

a 10 m offset. Sampling every 50th image with a 2 m offset provided >80% detection 396 

probability for 16 species, whereas sampling every 50th image with a 10 m offset only 397 

provided >80% probability of detecting the temporal decline for only 10 species.  398 

 399 

Species whose change in cover could be detected with high probability with a 2 m offset, but 400 

not a 10 m offset with the same image sampling intensity were consistently those species 401 

with relatively high spatial variance and short ranges (e.g. Black coral sp., Cup sponge sp. 1, 402 

Cup sponge sp. 2 and Cup sponge sp. 4 when sampling every 50th image – Figure 6 and S2 403 

Supplementary Materials).  404 

 405 

 406 

 407 

  408 
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4. Discussion 409 

 410 

Understanding the effect of spatial and temporal patterns is a necessary prerequisite for the 411 

design of effective monitoring programmes that aim to detect spatial and temporal change 412 

(Urquhart, Overton, & Birkes, 1993). In deep-water benthic ecosystems, where researchers 413 

often find high diversity and low overall cover of single species (e.g. Monk et al., 2016; 414 

Schlacher et al., 2007) and the spatial precision of transects is problematic, it is particularly 415 

important that sampling designs take into account the spatial properties of organisms (Irvine 416 

et al., 2013; Legendre et al., 2002). Here geostatistical models are used to quantify the spatial 417 

properties of potential indicator species at a long-term deep-water benthic monitoring site, 418 

and highlight how these properties influence survey outcomes. Spatial properties of 419 

organisms as described by range and spatial variance parameters are found to have an 420 

appreciable influence on sampling outcomes. Target organisms that were found to have short 421 

effective ranges and high spatial variances require both increased geolocation precision for 422 

repeat transects and a higher sampling intensity to achieve high precision outcomes. Through 423 

simulations based on model outputs, it was found that 2 m offsets in repeat transects, which 424 

are typical for an AUV, are unlikely to have major impacts on the probability of detecting 425 

change in indicator species, provided that at least every 50th image (a spacing of 426 

approximately 20 m) was systematically sampled along the transect. At a larger offset 427 

distance of 10 m, much higher image sampling is likely to be required in order to achieve a 428 

high probability of detecting change in the cover of the same species. These findings have 429 

important implications for researchers interested in monitoring change in benthic ecosystems, 430 

and highlight the importance of considering the interaction between sampling design, the 431 

technical limitations of survey equipment and the spatial properties of indicator species. 432 

 433 
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4.1 The spatial properties of deep-water benthic species 434 

 435 

Variability in survey outcomes introduced through the distributional patterns of organisms 436 

can have a marked effect on the ability to detect change and therefore should be taken into 437 

account when planning monitoring programmes (Legendre et al., 2002; Thrush, Pridmore, & 438 

Hewitt, 1994; Tobin, 2004). The geostatistical descriptions of the species in this study 439 

provide the first detailed quantitative description of the spatial properties of deep-water 440 

benthic species over small scales (1-100s metres). Quantifying spatial properties and their 441 

influence on sampling outcomes at this scale is vital for monitoring programmes where there 442 

is a need to ensure the precision of site-level survey outcomes. Similar descriptions at this 443 

scale are currently limited to terrestrial examples (e.g. Cardina, Johnson, & Sparrow, 1997; 444 

Park & Lee, 2014), perhaps due to the sampling effort and computational difficulties 445 

associated with spatial modelling of the large data sets required. Novel computational 446 

approaches, such as INLA, may provide a remedy to this situation, allowing a growing 447 

database of such descriptions for cross-system comparison.  448 

 449 

Model outputs showed that many of the species have effective ranges of less than 5 metres 450 

indicating spatial dependence within individual patches that are metres in diameter. Studies in 451 

shallower marine environments have also emphasized the large variability in individual 452 

species abundances between sampling plots at small scales (from centimetres to metres) at a 453 

site scale (e.g. Underwood, Chapman, & Connell, 2000; Ysebaert & Herman, 2002). Where 454 

indicator species display high levels of spatial autocorrelation over small distances, as 455 

indicated by short ranges, it might be expected that spatially precise repeat transects that are 456 

relocated within this range distance would be required for precise survey outcomes. These 457 
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results highlight the necessity of simultaneously considering the spatial properties, repeat 458 

geolocation precision of transects and the sampling intensity.  459 

 460 

4.2 The importance of repeat transect precision for benthic monitoring  461 

 462 

When conducting repeat surveys with the aim of detecting change, surveys should be 463 

designed to minimize the variability introduced into the subsequent analysis (Larsen et al., 464 

2001; Urquhart & Kincaid, 1999; van der Meer, 1997). For repeat surveys utilizing transects, 465 

it is important to maximize the covariance between repeat observations (in the case of this 466 

study, repeat images), by minimizing the distance between the repeat transects (Ryan & 467 

Heyward, 2003). The geostatistical analysis conducted here shows that spatially precise 468 

repeat transects may increase the repeat precision of estimates of percentage cover for species 469 

that have short effective ranges and high spatial variance. Achieving high precision in cover 470 

estimates when repeat transects are spatially offset requires an increased amount of sampling 471 

that will be dependent on both the offset distance and the spatial properties of the indicators. 472 

A high probability of detecting a 50% decrease in percentage cover is shown to be achievable 473 

for the majority of species studied with up to a 10 m offset, provided that image sampling 474 

levels along the transect are sufficiently high (every 5th image = approximately every 2 m 475 

along the transect). At a smaller offset of 2 m, such as may be expected with an AUV, a much 476 

reduced sampling intensity can be employed to achieve similar probabilities of detection. 477 

Conversely, a smaller decrease in percentage cover can be detected for a small offset with 478 

less sampling intensity than would be required with a larger offset. With technologies such as 479 

towed video or imaging sleds that are likely to have larger offsets, researchers need to 480 

carefully consider whether the level of image sampling needed to achieve precise repeat 481 

transects is prohibitive for the indicators in question. Furthermore, difficulty in maintaining 482 
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constant altitude above the sea floor with platforms such as towed video or imaging sleds 483 

(Thresher et al., 2014), may result in an insufficient amount of useable imagery to obtain 484 

precise cover estimates.  485 

 486 

4.3 The importance of sampling intensity for repeat transects 487 

 488 

Variability due to sampling design, such as the number of transects and/or the transect design, 489 

the number of images and the number of points within images can have a marked effect on 490 

sampling estimates (Brown et al., 2004; Leujak & Ormond, 2007; Molloy et al., 2013). While 491 

the repeat precision of transects will be dependent on factors largely outside of a researcher’s 492 

ability to control, such as the technical limitations of the survey platform and prevailing 493 

currents, determining the number of images needed to be sampled is an important 494 

consideration to achieve adequate precision without wasting sampling effort. Based on 495 

previous research which showed that a large number of images are likely to be required for 496 

precise estimates of low cover species such as occur in this study system, it was anticipated 497 

there would be a need to sample in excess of 100 images (Perkins et al., 2016). While scoring 498 

for continuous coverage along a transect is optimal, the results show that where species are 499 

found to have longer ranges and lower spatial variances a reduced sampling effort can be 500 

employed. Scoring every 20th image (a total of 156 images at this site) gave >80% probability 501 

of detecting a halving in the odds of presence for 17 out of 20 species at a 2 m displacement. 502 

This represents a considerable reduction in scoring effort to scoring every 5th image (a total of 503 

622 images), while maintaining a reasonable probability of detecting temporal change. 504 

 505 

The final selection of indicators for long-term monitoring will depend on a range of factors 506 

specific to the programme (see Hayes et al., 2015). Although the present study has focused 507 

https://onlinelibrary.wiley.com/doi/full/10.1002/aqc.2960 POSTPRINT

https://www.nespmarine.edu.au/document/spatial-properties-sessile-benthic-organisms-and-design-repeat-visual-survey-transects 23



only on statistical and logistical considerations, the results suggest that geostatistical analyses 508 

may provide a useful tool to help in choosing suitable indicators. For example, if researchers 509 

decide that a certain level of image sampling is prohibitively high, then certain indicators can 510 

be ruled out as being suitable monitoring candidates due to the difficulty in gaining sufficient 511 

precision in estimates of cover. Species with low probability of detecting temporal decline at 512 

larger offsets or reduced image sampling were found to be those species that had 513 

geostatistical properties of short ranges or high spatial variances or both. Pilot studies that 514 

incorporate intense image scoring in the early stages of a monitoring program would allow 515 

greater precision in initial cover estimates and model parameters. Such an effort in the early 516 

stages of a monitoring program could guide ongoing sampling levels and the narrowing down 517 

of potential indicators at a later stage. In addition to aiding in indicator selection, pilot studies 518 

would allow cost-benefit analyses of the trade-off of differing sampling designs and/or tool 519 

combinations. 520 

 521 

Although alternative transect designs were not tested in this study, transect layouts that 522 

provide a better coverage of images over the site are likely to provide higher precision in 523 

estimates of cover of benthic species (Cole, Healy, Wood, & Foster, 2001; Foster et al., 524 

2014). Previous studies examining sampling of imagery have typically been based on the use 525 

of multiple short (< 50 m) transects in shallow-water sites, where more transects are often 526 

recommended in order to increase the precision of estimates (e.g. Brown et al., 2004; Molloy 527 

et al., 2013; Ryan & Heyward, 2003). In contrast, transect designs for AUVs typically 528 

involve multiple grid lines (e.g. Figure 1c), over meso-scales (100s m to kms; Pizarro et al., 529 

2013; Van Rein et al., 2009). Rigby et al. (2014) show through simulation, the sensitivity of 530 

model parameter estimates to sample effort when using transect sampling designs. 531 

Understanding the trade-off between sampling effort, model parameter estimation, and the 532 
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effect sizes detectable for ecological monitoring programmes is crucial for effective design. 533 

The present analysis shows that by sampling a sufficient number of images with the current 534 

grid design transect layout, high probability of detecting a 50% change can be achieved.  535 

 536 
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Table 1: Summary of model outputs based on the original scored data for all 20 species. 

Mean effective range and spatial variances are the mean of the posterior distribution from the 

INLA models. Species classifications are based on the CATAMI system (see Althaus, Hill, 

Rees, Jordan, & Colquhuon, 2013). 
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Species Percent  

Cover 

(%) 

Number of images 

present (Total = 

622)  

Mean 

spatial 

variance 

Mean 

effective 

range (m) 

Bryozoan sp. 0.09 23 (4%) 3.28 45.41 

Gorgonian sp. 1.4469 246 (40%) 1.33 16.57 

Black coral sp. 0.1736 21 (3%) 13.4 3.37 

Erect sponge sp. 1 0.2797 48 (8%) 5.2 3.09 

Erect sponge sp. 2 0.5241 112 (18%) 1.19 4.37 

Erect sponge sp. 3 0.9711 162 (26%) 1.71 3.38 

Laminar sponge sp. 1 0.2476 44 (7%) 4.81 5.67 

Laminar sponge sp. 2 0.0193 4 (< 1%) 0.54 103.12 

Laminar sponge sp. 3 0.0129 3 (<1%) 2.57 94.33 

Palmate sponge sp. 0.0932 19 (3%) 5.5 20.56 

Cup sponge sp. 1 0.2219 40 (6%) 5.09 2.65 

Cup sponge sp. 2 0.1994 38 (6%) 5.54 2.39 

Cup sponge sp. 3 0.3826 77 (12%) 2.87 2.37 

Cup sponge sp. 4 0.5241 87 (14%) 4.28 2.3 

Cup sponge sp. 5 0.119 23 (4%) 10.37 23.43 

Cup sponge sp. 6 0.3215 71 (11%) 2.26 3.46 

Massive sponge sp. 1 0.6174 122 (20%) 1.82 3.51 

Massive sponge sp. 2 0.1897 42 (7%) 2.82 3.93 

Massive sponge sp. 3 0.4084 82 (13%) 1.97 9.75 

Massive sponge sp. 4 0.0032 1 (< 1%) 0.14 114.27 
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Figure 1: The study site, showing (A) the regional setting, (B) the transect location, and (C) 

the transect used for scoring with an underlying multibeam sonar map showing the location 

of reef and the depth profile. Blue shaded area indicates the Commonwealth Marine Reserve 

boundaries. 

 
 
Figure 2: Posterior distribution of the range for all 20 species. Each line represents the 

posterior distribution of the range for one of the 20 species. The range has been truncated at 

100 metres, as this covered the mode of the distribution for all species, although values did 

extend to 2500 m. 

 
 
Figure 3: Covers of each species in the original scored data, and biases and credible intervals 

in offset transects scored with every 5th image: (a) Distribution of empirical data for the six 

chosen species across the transect. Grey lines show AUV flight path. Circle sizes reflect 

relative percent covers within images along the original transect as indicated by the scale at 

the bottom (b) Mean difference (i.e. bias) and 95% credible intervals for percent cover 

estimates between transects conducted along the original locations, compared to offset 

transects. Offset distances have been truncated to 32 m to allow better resolution of small 

offsets. Dashed line is at zero, indicating zero bias between original and offset transects. 

 
 
Figure 4: Difference in coefficient of variation (delta CV) for the cover estimate for a 

transect in the original location, and offset transects at displacements from 0.5 to 32 metres 

for six species over all simulations. A truncated distance of 32 m was used to improve the 

resolution at shorter distances. CVs were taken over 5000 simulations, based on 5000 
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posterior sample draws of the hyperparameters from the INLA models for each species. All 

scoring was done with every 5th image systematically selected along the transect. The line for 

Laminar sponge sp. 2 has been truncated to maintain the detail in the other species.  

 
 
Figure 5: The effect of offset transect displacement distance in combination with different 

image sampling intensities on the precision of repeat transects for six species. Precision is 

represented as the difference in coefficient of variation (delta CV) of the mean percent cover 

estimate from a transect in the original location with every 5th image, and mean percent cover 

from offset transects at various displacements and with varying image sampling intensities. 

Note that colours are not consistent between plots. CVs were taken over 5000 simulations.  

 
 
Figure 6: Probability of detecting a halving in the odds of presence for six species with 

repeat transects and different image sampling intensities at (a) a 2 meter offset distance and 

(b) a 10 m offset distance. Dashed line is at 80% probability of detection. 
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Appendix – Bayesian priors for the INLA models 

 

In Bayesian statistics, the term ‘hyperparameter’ refers to a parameter of a prior distribution, 

which defines a probability distribution based on previous knowledge. Therefore, 

ecologically meaningful hyperparameters needed to be specified for the following priors: the 

intercept (αc), which represent the mean cover over the site; the spatial variance (σ2); and κ 

which is related to the range by r = √8λ/κ. The prior specified for 𝜌𝜌𝑐𝑐(equation (5)) induces a 

prior on κ.The covariance function used was the Matérn covariance function as given by 

Lindgren et al. (2011): 

𝐶𝐶𝐶𝐶𝐶𝐶 �𝜉𝜉(𝑠𝑠𝑖𝑖), 𝜉𝜉�𝑠𝑠𝑗𝑗�� =  
𝜎𝜎2

Γ(𝜆𝜆)2𝜆𝜆−1
�𝜅𝜅 ∥ 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗 ∥�

𝜆𝜆
Κ𝜆𝜆�𝜅𝜅 ∥ 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗 ∥�, 

where ∥ 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗 ∥ is the Euclidean distance between two image locations 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 ∈  ℝ𝑑𝑑, σ2 is the 

marginal variance, and 𝜅𝜅 is a scaling parameter related to the range r by the relationship r =

√8λ/κ (Lindgren et al., 2011). The term Κ𝜆𝜆 denotes the modified Bessel function of the 

second kind (Abramowitz & Stegun, 1972). The parameter λ measures the smoothness of the 

correlation process (Lindgren et al., 2011). A default value of λ = 1 was used, as this 

parameter typically has poor identifiability (Blangiardo & Cameletti, 2015) and so its choice 

has little bearing on the model’s interpretation.  

 

Due to the difficulties with surveying waters beyond SCUBA depths, published knowledge 

regarding the distributional properties of species at these depths is inherently limited. 

Evidence from surveys from south-east Australia (Schlacher et al., 2007) and Canada (Chu & 

Leys, 2010), suggests that deep-sea sponge groups are likely to have an effective range 

(defined as the distance needed before two locations have modelled correlation less than 

about 0.1, Lindgren et al. 2011) on the order of metres to tens of metres. In the absence of 
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detailed information to inform priors for each species separately, priors for the range, 

intercept and spatial variance were common across all species.  

 

For the range, a normal prior was specified for logρc such that P(ρc < 100) = P(ρc > 30) = 

1/4, which gives an a priori 50% chance that the effective range is between 30 and 100 

metres. For the intercept, as previous research (see Perkins et al., 2016) suggested that the 

majority of deep-water invertebrates have relatively low percent cover (typically less than 

5%), a log-normal prior was specified for αc such that P(αc < 0.001) = P(αc > 0.05) = 1/4, 

which gives a 50% chance that the intercept for any given species is between 0.1% and 5%. 

 

Specifying the prior for the marginal spatial variance is more difficult. In particular, the 

spatial random effects induce dependence at the level of the linear predictor rather than the 

observations. The prior is developed for images located far enough apart that spatial 

dependence is negligible. Let the mean percent cover for species c be defined by the intercept 

αc such that, 

 

𝜋𝜋𝑐𝑐 =
exp𝛼𝛼𝑐𝑐

(1 + exp𝛼𝛼𝑐𝑐)
 

 

Then the prior Eq. (6) induces a normal prior on the log odds ratio of the percent cover at 

location 𝑠𝑠𝑖𝑖 relative to the average, 

log𝑅𝑅(𝑠𝑠𝑖𝑖, 𝑐𝑐) = log�
𝑝𝑝(𝑠𝑠𝑖𝑖, 𝑐𝑐)

1 −  𝑝𝑝(𝑠𝑠𝑖𝑖, 𝑐𝑐)� − log �
𝜋𝜋𝑐𝑐

1 −  𝜋𝜋𝑐𝑐
�  ~ 𝑁𝑁(0,𝜎𝜎𝑐𝑐2), 

where log � πc
1− πc

� = αc. This implies a lognormal prior on the odds ratio R(si, c) =

(p(si, c)/(1 − p(si, c) ))/(πc /(1 −  πc )) . If σc =  0.421 then the probability that this odds 

ratio exceeds 1/2 or 2 is given by, P(R(si, c)) < 1/2 ∪ R(si, c) > 2) = 0.10. Similarly, if σc 
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= 1.400 then the probability that this odds ratio exceeds 1/10 or 10 is given by, P(R(si, c)) <

1/10 ∪ R(si, c) > 10) = 0.100. A normal prior for log σc with hyperparameters aσ = -0.264 

and bσ = 0.890 (the mean and standard deviation, respectively) was chosen such that 

P(σc <  0.421) =  P(σc >  1.4) = 0.25, which gives a 50% chance that the spatial standard 

deviation is between the above two bounds. 

 

https://onlinelibrary.wiley.com/doi/full/10.1002/aqc.2960 POSTPRINT

https://www.nespmarine.edu.au/document/spatial-properties-sessile-benthic-organisms-and-design-repeat-visual-survey-transects 36



Supplementary Materials – Results for remaining 14 species 
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Fig. S1: Difference in coefficients of variation (CVs) of the percent cover estimate for a transect in 
the original location, and offset transects at various displacements and with varying image sampling 
intensities for the remaining fourteen species in the study (see Fig. 5). CVs were taken over 1000 
simulations, based on 1000 posterior sample draws of the parameters from the INLA models.  
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Fig. S2: Probability to detect a decrease given a 50% decrease in the odds of presence for the 14 
remaining species in the study (see Fig. 6) with repeat transects and differing image sampling 
intensities at (a) a 2 metre offset distance and (b) a 10 m offset distance. Dashed line is at 0.8 
probability. B = Bryozoan, ES = Erect sponge, LS = Laminar sponge, CS = Cup sponge, MS = Massive 
sponge. 
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Supplementary Material – Species Catalogue 

Sample Images Broad 

Taxonomic 

Group 

Specifier Shape Colour Species 

 

 

Bryozoan  Soft Brown Bryozoan sp. 

 

Cnidarian Black Coral 3D 

Branching – 

Bottlebrush 

White Black coral sp. 

 

 

Cnidarian Gorgonian Soft – Fern 

Frond 

Orange 

/ Red 

Gorgonian sp. 

 

Sponge Branching Thick Grey / 

Purple 

Erect sponge sp. 3 
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Sponge Branching Thick Orange Erect sponge sp. 2 

 

Sponge Branching  Brown Erect sponge sp. 1 

 

Sponge Laminar Top Osicles Grey / 

Peach 

Laminar sponge 

sp. 1 

 

Sponge Laminar Top Osicles Orange Laminar sponge 

sp. 2 

 

Sponge  Laminar Side Osicles 

/ Flat 

Orange Laminar sponge 

sp. 3 
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Sponge Palmate N/A Orange Palmate sponge 

sp. 

 

Sponge Cup Thick Blue Cup sponge sp. 1 

 

Sponge Cup Frilly  Cup sponge sp. 2 

 

Sponge Cup Thick Grey / 

Pink 

Cup sponge sp. 3 

 

Sponge Cup Thick Purple / 

Maroon 

Cup sponge sp. 4 
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Sponge Cup Thick Red Cup sponge sp. 5 

 

Sponge Cup Thin Yellow Cup sponge sp. 6 

 

Sponge Massive Papillate Yellow Massive sponge 

sp. 1 

 

Sponge Massive Conc. 

Osicles 

Pink Massive sponge 

sp. 2 

 

 

Sponge Massive Conc. 

Osicles 

Purple Massive sponge 

sp. 3 
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Sponge Massive Shapeless Orange Massive sponge 

sp. 4 
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Supplementary Material – INLA Code 

# Disclaimer: this is experimental code, designed to be used for one study.   

# It is included here as others may find it useful, but we do not necessarily recommend using it as a  

# template for future studies  

 

# Note: Users will need to first define the mesh for the study region, and Bayesian priors for: 

# spatial range (a.rho and b.rho.prec) and spatial variance (a.sigma and b.sigma.prec) for the 

selected species 

 

spde <- inla.spde2.matern(mesh = mesh.b ,  

                          B.tau = matrix(c(0, -1, +1), nrow = 1, ncol = 3), 

                          B.kappa = matrix(c(0, 0, -1), nrow = 1, ncol = 3), 

                          theta.prior.mean = c(a.sigma, a.rho), 

                          theta.prior.prec = c(b.sigma.prec, b.rho.prec) 

                          ) 

 

# Create a sparse weight matrix 'A' by identifying the data locations in the mesh and organising the 

corresponding  

# values of the basis functions. sp$utm.x and sp$utm.y define the xy locations for a given species 

A <- inla.spde.make.A(mesh = mesh.b, loc = cbind( sp$utm.x, sp$utm.y)) 

 

# Define the linear predictor, removing the default intercept and replacing with the object 

"intercept" 

# 'nodes' define the index for the vertices of the mesh for calculating the spatial random effect  

# that is defined by the spde model 

formula <- z ~ intercept + f(nodes, model = spde) - 1 
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sp$ntrial <- sp$present + sp$absent #define binomial trials for number of points falling on the given 

species 

i.index <- inla.spde.make.index(name = "nodes", n.spde = spde$n.spde) #define an index for the 

nodes 

#Combine data into an inla.stack object 

stack <- inla.stack(data=list(z=sp$present,ntrial=sp$ntrial), A=list(A), effects=list(c(i.index, 

list(intercept=1)))) 

#fit the model 

result <- inla(formula, data=inla.stack.data(stack), control.predictor=list(A=inla.stack.A(stack)), 

control.inla = list(int.strategy = "grid", dz = 0.2), control.compute=list(config=TRUE), 

family="binomial", Ntrials=ntrial) 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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