BRITISH

ECOLOGICAL SOCIETY

Methods in Ecology and Evolution

	Methods in Ecology and Evolution
Manuscript ID	Draft
Manuscript Type:	Review
Date Submitted by the Author:	n/a
Complete List of Authors:	Sequeira, Ana; The University of Western Australia, School of Biological Sciences and The Oceans Institute Bouchet, Phillipe; University of Western Australia, Centre for Marine Futures and School of Biological Sciences Yates, Katherine; University of Salford, School of Environment and Life Sciences Mengersen, Kerrie; Queensland University of Technology, School of Mathematics and Statistics; ARC Centre of Excellence for Mathematics and Statistics Caley, M. Julian; Quuensland University of Technology; ARC Centre of Excellence for Mathematics and Statistics
Keywords:	Statistics, Applied Ecology, Conservation, Modelling (Community Ecology) < Community Ecology
Abstract:	 After decades of extensive surveying, knowledge of the global distribution of species still remains inadequate. In the short to medium term, such knowledge is unlikely to improve greatly given the often prohibitive costs of surveying and the typically limited resources available. By forecasting biodiversity patterns in time and space, predictive models can help fill critical knowledge gaps and prioritize research to support better conservation and management. The ability of a model to predict biodiversity metrics in novel environments is termed 'transferability', and models with high transferability will be the most useful in this context. Despite their potential broad utility, little guidance exists on what confers high transferability to biodiversity models. We synthesise recent advances in biodiversity model transfers to facilitate increased understanding of what underpins successful model transferability, demonstrating that a consistent approach has so far been lacking but is essential for achieving high levels of repeatability, transparency, and accountability of model transfers. We provide a set of guidelines to support efficient learning and the improvement of model transferability.

SCHOLARONE[™] Manuscripts

1	Transferring Biodiversity Models for Conservation: Opportunities and
2	Challenges
3	
4	AMM Sequeira ¹ , PJ Bouchet ² , KL Yates ³ , K Mengersen ⁵⁶ , MJ Caley ⁵⁶
5	
6	Running title: Roadmap for improved model transfers in ecology
7	Word count: 8514
8	
9	¹ IOMRC and Australian Institute of Marine Science, UWA Oceans Institute and School of
10	Biological Sciences, M096, The University of Western Australia, Crawley, Western
11	Australia, Australia
12	² Centre for Marine Futures, School of Biological Sciences, The University of Western
13	Australia, Western Australia 6009, Australia
14	³ School of Environment and Life Sciences, University of Salford, Manchester, UK
15	⁴ School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
16	⁵ School of Mathematical Sciences, Queensland University of Technology, Brisbane,
17	Queensland, Australia
18	⁶ Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers
19	(ACEMS)
20	Corresponding author:
21	IOMRC building Room 2.23; Cnr Fairway and Service Road 4 (M470)
22	The University of Western Australia
23	35 Stirling Highway, Crawley; Western Australia 6009
24	Phone : +61 8 6488 2219
25	Email: ana.sequeira@uwa.edu.au

Abstract

27	1.	After decades of extensive surveying, knowledge of the global distribution of species
28		still remains inadequate. In the short to medium term, such knowledge is unlikely to
		improve greatly given the often prohibitive costs of surveying and the typically
29		
30		limited resources available.
31	2.	By forecasting biodiversity patterns in time and space, predictive models can help fill
32		critical knowledge gaps and prioritize research to support better conservation and
33		management.
34	3.	The ability of a model to predict biodiversity metrics in novel environments is termed
35		'transferability', and models with high transferability will be the most useful in this
36		context.
37	4.	Despite their potential broad utility, little guidance exists on what confers high
38		transferability to biodiversity models.
39	5.	We synthesise recent advances in biodiversity model transfers to facilitate increased
40		understanding of what underpins successful model transferability, demonstrating that
41		a consistent approach has so far been lacking but is essential for achieving high levels
42		of repeatability, transparency, and accountability of model transfers.
43	6.	We provide a set of guidelines to support efficient learning and the improvement of
44		model transferability.
45		
46	K	eywords:
47	Statis	tics, Applied ecology, Biodiversity, Conservation, Modelling, Extrapolation,
48	Forec	asting

50	Model Transferability as a Tool for Conservation and Management
51	Effective conservation and management of biodiversity requires a robust understanding of the
52	distribution and status of wildlife species. However, our existing knowledge of biological
53	systems is frequently inadequate and field surveys too costly to generate the data necessary
54	for addressing many immediate management needs (Margules and Pressey 2000). As a result,
55	spatial planning is often constrained to proceed in the absence of relevant ecological
56	information (Possingham et al. 2007). In these cases, indirect methods for estimating
57	biodiversity patterns, such as predictive models, could be of great utility for decision-making.
58	Indeed, correlative models relating ecological metrics to environmental and spatial predictors
59	(henceforth biodiversity models) are now commonplace (see e.g., Franklin 2010 for a
60	summary of methods used and a framework for spatial prediction of species occurrence) and
61	play a critical role in supporting management and conservation efforts worldwide (Margules
62	and Pressey 2000, Robinson et al. 2011). Such models are increasingly sought where data are
63	scarce or non-existent, for example, when predicting the distributions of threatened or
64	invasive species into unsampled locations, or under future climates (Austin and Meyers 1996,
65	Elith et al. 2010, Duque-Lazo et al. 2016). While the literature on biodiversity models is now
66	very large, little guidance exists on how to maximise the utility of transferring these models.
67	The ability of a model developed for a specific site and/or time to predict biodiversity
68	in a different time or place defines its transferability (Fig. 1). Transferability therefore,
69	encompasses the statistical concept of extrapolation which is embedded in the broader topic
70	of model validation. Transferability has the potential to leverage legacy investments in
71	sampling and increase the efficiency of management and conservation actions. However,
72	whilst the development of biodiversity models and model validation has proceeded rapidly in
73	the last decade (Fig. 2) (Elith et al. 2006, Elith and Leathwick 2009), their transferability
74	remains poorly understood (Robinson et al. 2011), particularly in marine systems (e.g.,

75 Lauria et al. 2015, Sequeira et al. 2016). Moreover, transferability assessments have not yet 76 been standardised, leading to disparate interpretations that preclude comparisons of relative 77 performance among model transfers. To address these knowledge gaps, we synthesise the 78 emerging field of model transferability with the aim of fostering consistent and transparent 79 model transfers in ecological studies. We begin by defining multiple scenarios under which 80 model transfers can take place, reviewing lessons learnt, and describing modelling 81 approaches applied to date. We then clarify critical, yet commonly ignored assumptions, 82 discussing perceived constraints and limitations of model transferability, and highlighting the 83 diversity of assessment metrics currently available. Building on these observations, we 84 describe how the standardisation of transferability assessments among studies will catalyse 85 the widespread application of model transfers in marine and terrestrial environments. We 86 make practical recommendations on ways to achieve such consistency and advocate for 87 future research that would improve the transferability of biodiversity models.

88 From Reference to Target Systems

89 A model must be developed for a reference system (location and/or point in time) where data 90 are available at a number of sampling locations, before being transferred. This reference 91 model is calibrated within a range of values for each predictor, and then projected, or 92 transferred, to a target system (some other location or time). Model transferability can take 93 many forms depending on the predictors available for the target system, their range of values, 94 as well as those of the response variable (Fig. 1). The most straightforward situations are 95 those where both response and predictor variables are within the same ranges in both the 96 reference and target systems (Fig 1a, External 1; and Fig 1b, blue ellipse). In this scenario, 97 the environmental space is the same in both systems and the realised niche in the target 98 system is fully contained in the model created for the reference system. Good transferability 99 can therefore be expected, assuming reasonable overlap in the combinations of response and

100	predictor variables. When the range of predictors in the target system is within that used for
101	model calibration in the reference system but the response variable is not (e.g., when
102	observed abundances are different in the target and reference systems), two situations can
103	occur: (i) poor transferability should be expected where the relationship between response
104	and predictor variables differs (Fig 1b, External 2), and (ii) when this relationship is similar
105	(Fig 1b, External 3), transferred predictions will always be biased. If this bias is relatively
106	consistent (e.g., always lower or higher), then a simple correction to the resulting predictions
107	could allow for good transferability. For example, the probability of occurrence of a species
108	in the target system might always be 20 % lower than in the reference system, in which case a
109	simple correction to account for this bias could result in a shift from poor to good model
110	transferability. Where sample sizes are sufficiently large, the predictive performance of the
111	transferred model can be robustly tested, yielding potential insights into how model
112	transferability is affected by novel conditions. When predictor values are within the range of
113	those used in the reference model (Fig 1a, External 5), models transferred from an
114	information-rich area may successfully predict species distributions and help inform new
115	sampling designs in spite of data scarcity in the target system. However, when the range of
116	predictor values in the target system extends beyond that encountered during model building
117	for the reference system, model transfers will involve some mathematical extrapolation (Fig
118	1b, External 4 and Fig 1a, External 6 and 7). If the range of predictors in the target systems is
119	entirely outside that used in the reference model (Fig 1d, External 7), transferability tests
120	would typically only serve to capture the potential distributions of species under novel
121	environmental conditions. Despite the many possible different scenarios, confidence in the
122	resulting predictions derived from transferred models is paramount and will depend strongly
123	on the identification of opportunities for robust model validation. We suggest therefore that
124	the form of the transferability test being performed always should be explicitly described in

model transferability studies, including a summary of the relationships between predictor and
 response variables for data from reference and target systems.

127 The amount of data available in each system will also be a key determinant of the 128 model transfer protocols chosen in any given situation, and three different scenarios can be 129 considered. First, where sufficient information exists for both response and predictor 130 variables in the reference and target systems (data-rich), it is possible to directly test model 131 transferability through empirical validation (Barbosa et al. 2009, Sequeira et al. 2016). Such 132 scenarios are useful to better understand the factors affecting model transfers (Fig. 3) and 133 inform model transfer endeavours elsewhere. Second, when data for both response and 134 predictor variables at the target system are insufficient (data-deficient), testing model 135 transferability is only possible if alternative data sources for predictor variables are sought 136 and/or if assumptions are made about the similarity of the covariate space and relationships 137 between the response and predictor variables (Fig. 3) (Schadt et al. 2002). Third, when 138 information is lacking for either response or predictor variables in the target system (Fig. 3) 139 (data-sparse), several courses of action are possible (e.g., Sequeira et al. 2014). Where data 140 for the target system are available for predictor variables but not response variables, the same 141 set of predictor variables (p) need to be considered in both the reference and target systems, 142 and it is preferable that the range of each predictor in both systems is similar, as detailed 143 above. If the range of predictors in the target system exceeds that in the reference system, 144 caution is advised (see extrapolation section). Examples and recommendations for each of the 145 three scenarios presented are included in Fig 3.

146 Choice of Modelling Algorithms Can Affect Transferability

147 The transferability of predictive models can be dataset, question, and algorithm-specific

- 148 (Elith et al. 2006, Duque-Lazo et al. 2016). It is often thought that model simplicity and
- 149 parsimony should be preferred over complexity. Simpler models are easier to interpret and

150	also return smoother response curves that are relatively immune to overfitting and may
151	therefore be more widely applicable (Vaughan and Ormerod 2005, Lauria et al. 2015).
152	However, defining complexity of biodiversity models is not straightforward as it depends on
153	the interplay between the complexity of the underlying processes and the amount of data
154	available to build the model. For these reasons, past comparisons of model performance may
155	have been unfair (García-Callejas and Araújo 2015). New complexity indices are being
156	studied (García-Callejas and Araújo 2015, Moreno-Amat et al. 2015, Bell and Schlaepfer
157	2016), but further testing of their influence on the interpretation of model transferability is
158	needed before clear advice can be given.
159	Similarly, best practice regarding algorithm choice for testing model transferability is,
160	so far, not settled. For example, previous studies have reported better transferability in
161	generalised additive or linear models (GAMs or GLMs), maximum entropy models (MaxEnt)
162	and boosted regression trees (BRTs) compared to random forests (RFs) (Dobrowski et al.
163	2011, Heikkinen et al. 2012). GAMs have also been seen as robust when predictions are
164	needed beyond the range of sampled values (i.e., when extrapolating) (Fronzek et al. 2011),
165	despite being unconstrained outside the bounds of the observations used during model
166	calibration (unlike RFs, MaxEnt and BRTs). Without consensus on the best algorithms or
167	methods to develop more transferable models (Araujo and Guisan 2006, Randin et al. 2006),
168	three different approaches to multi-model comparisons have been suggested: (i) adopt a
169	single modelling procedure regarded as the most suitable to the research problem being
170	addressed; (ii) implement a suite of algorithms and proceed with the best performing one; or
171	(iii) combine several approaches to generate "ensemble" forecasts. While it is hard to provide
172	general guidance, ensemble approaches have been suggested to offer superior predictive
173	power (Marmion et al. 2009, Grenouillet et al. 2011).

174 All of the approaches described above relate to correlative models. Although beyond 175 the scope of this review, process-based mechanistic models are also worth considering in the 176 context of transferability because they can explicitly incorporate the dynamics of biological 177 processes thought to limit species' ranges (Buckley et al. 2010) such as dispersal, 178 connectivity, and trophic interactions. Mechanistic models, however, tend to be more 179 challenging to construct and test, owing to greater demands on computational resources and 180 data needed for calibration and validation. Consequently, the transfer of mechanistic models 181 in predictive ecology remains rare despite their considerable promise in strengthening and 182 guiding conservation practice under climate change and biological invasions (Kearney et al. 183 2010, Cuddington et al. 2013).

184 Common Assumptions Underlying Model Transfers

185 Irrespective of the approach used, model transferability hinges on a number of assumptions 186 that are commonly overlooked (Mesgaran et al. 2014, Werkowska et al. 2017) and may 187 explain some difficulties in obtaining good model transferability. For example, species are 188 often assumed to be at equilibrium with their environment and present in all suitable sites. 189 However, such equilibrium is taxon-dependent and inversely related to a taxon's ability to 190 track dynamic conditions, and should therefore be explicitly considered beforehand. The set 191 of conditions under which species can persist (niche, sensu Hutchinson 1957) is also 192 commonly assumed to be stationary in both space and time (Wiens and Graham 2005). A 193 discussion on the reasoning behind this assumption should be clearly specified in any transfer 194 test as it may not hold if existing biotic or abiotic interactions break down, shift, or new ones 195 form. Moreover, increasing evidence for rapid niche shifts (Broennimann et al. 2007) may 196 render static models invalid for predicting into space or time (Forester et al. 2013). 197 Integrating information from mechanistic models can improve trust in the resulting 198 predictions in this context (Elith et al. 2010). Species occurrences are also commonly

199 assumed to be solely driven by environmental forces, but realised distributions can also 200 reflect current/past disturbances and human uses, and so historical events should be 201 considered when interpreting transferability results. Another common assumption is space-202 for-time substitutability, under which unobservable past or future temporal trends are inferred 203 from contemporary spatial models of different aged locations. However, conflicting 204 predictions generated by different models (Kharouba et al. 2009b) challenge the general 205 validity of this assumption, and the current best advice is, whenever possible, to use models 206 that have been successful at hindcasting (Kharouba et al. 2009a). 207 Overall, the transferability of biodiversity models can be affected by a wide range of 208 factors associated with the choice of study design, model algorithm, or target taxa, as well as 209 with the type, quantity and quality of input data, and the characteristics of the environment 210 (Table 1). To understand what confers transferability on biodiversity models, more will need

to be learned about the consequences of violating assumptions. This highlights the need to encourage best practice when testing model transferability by explicitly checking the validity of assumptions wherever possible (Werkowska et al. 2017) or explicitly reporting why they cannot be checked and if they are likely to affect the results of the transferred model. Results of these checks need to be reported as they will be crucial for understanding and improving model transferability.

217 Common Methods for Assessing Model Transferability

218 Model accuracy generally decreases when a model is transferred (Kharouba et al. 2009b,

219 Dobrowski et al. 2011, Torres et al. 2015). Assessments of model results beyond where and

- 220 when data were available (external evaluations) are commonly more variable than within the
- same location or time (internal evaluations) (Dobrowski et al. 2011). Furthermore, better fit
- 222 during internal evaluation has not always resulted in greater model transferability (Heikkinen

223 et al. 2012, Sequeira et al. 2016) and the reported ability of transferred models to predict well 224 has varied widely (Fielding and Haworth 1995, Randin et al. 2006, Martin et al. 2012, 225 Sequeira et al. 2016). 226 Part of this variability in transferability across studies may stem from the range of 227 different metrics used during evaluation (Wang and Jackson 2014), with at least 17 different 228 metrics reported to date (Table 2). Metrics derived from confusion matrices, such as 229 sensitivity, area under the curve (AUC)/receiver operating characteristic (ROC), Cohen's 230 kappa statistic, or the c-index (Vaughan and Ormerod 2005), have been favoured for models 231 of presence/absence or presence-only data (Randin et al. 2006). ROC has however, been 232 considered weak (Peterson et al. 2007), but see Phillips (2008). Spearman rank and 233 coefficients of determination (R^2) from linear regressions are commonly used for models 234 using count data (Lauria et al. 2015). Compound performance metrics have also been 235 proposed and applied, including the AUC-based transferability index TRI (Table 2) (Randin 236 et al. 2006), which compares internal and external evaluations made in both directions. 237 Reciprocal model transferability is, however, not always possible or warranted (Sequeira et 238 al. 2016), and being AUC-based, TRI only applies to models of presence-absence data. 239 Furthermore, indices focusing on the evaluation of model fit only provide partial assessments 240 of transferability; they do not evaluate maps of transferred predictions (Randin et al. 2006). 241 To assess these predictions, other metrics have been proposed, including Kulczynski's 242 coefficient (Legendre and Legendre 2012), Schoener's D (Warren et al. 2010), and the I 243 similarity statistic (or Modified Hellinger Distance) (Warren et al. 2008). In face of such 244 heterogeneity, standardised assessments of results across studies, modelling techniques, 245 datasets and environmental settings are needed to improve the utility of model transfers for

246 conservation. Such standardization will facilitate direct comparisons across studies and

promote their transparent interpretation, thereby strengthening our ability to meaningfullyaddress key knowledge gaps in model transferability.

249 Transferability assessments can also be model-focused, instead of data-focused, in 250 which case the onus is on finding the most general model (Wenger and Olden 2012). So, 251 when testing model transferability, a thorough assessment of model generality should also be 252 performed (Wenger and Olden 2012). As a general principle, only models demonstrating 253 good fit and evaluation for the reference system should be transferred, even if they do not 254 always result in good transferability. For example, better transferability is expected of models 255 developed for large, heterogeneous ecosystems where sampling effort has been sufficient to 256 capture the full range of environmental conditions available (Sequeira et al. 2016). Therefore, 257 when transferring models it is important to clearly justify the choice of a particular model for 258 any particular situation.

259 A Standardised Roadmap for Model Transferability Studies

When quantifying transferability, three aspects of model performance are commonly compared (adapted from Randin et al. 2006). These include the fit to the set of observations on which the model was built in the reference system, evaluation against observed data in the reference system not used for model training, and the model predictive power to the target system by comparison with observations or to the results of models developed in the new location or time.

Comparisons of model fit between reference and target systems are relevant for transferability assessments (see Fig. 3 for options when model fit in the target system is poor) but are not universally applicable because comparable results are only expected in special cases, such as when covariance structures are similar in both systems. By contrast, focusing on model evaluation and comparison of prediction results should allow meaningful insights to be obtained on the relevance of distinct modelling approaches relative to available datasets

272 and study sites. Even though the choice of metric for comparing predictive results might vary 273 between studies (Table 2), most metrics can be derived from a small set of basic statistics. 274 These include confusion matrices (TP, FP, TN and FN; refer to Table 2) and comparisons of 275 grid-cell values, such as predicted probabilities from a presence-only model or predicted 276 abundances. If these basic statistics are reported alongside the results for the metric chosen in 277 each study, they can then be used to derive most other metrics commonly used. They can also 278 be used to calculate additional descriptive statistics (e.g., mean, standard deviation, 279 covariance, collinearity or correlation) for datasets resulting from any model type. Such 280 reporting will facilitate comparisons across studies (Koricheva et al. 2013), and improve our 281 ability to provide clearer guidance in the future. Moreover, to further expedite comparisons, 282 we suggest as a minimum that one metric, the coefficient of determination (R^2) , should 283 always be reported. 284 In relation to model predictive power, the assessment of predictions from transferred 285 models should also estimate uncertainty and spatial dependencies among grid-cells. This can 286 be achieved using the structural similarity index (SSIM) (Jones et al. 2016), which was 287 designed to compare distributions of different species groups. SSIM provides an overall 288 measure of similarity between two sets of spatial observations (i.e. maps) ranging between -1 289 and 1, and could be used to test model predictive power through comparison of predictions 290 obtained from a model developed for the target system. SSIM also provides information 291 about where dissimilarities might be greater by comparing means, variances, and covariances, 292 which can provide information about where and why a model fails to transfer well (see 293 example of application of SSIM to model transferability in Fig. 4). 294 These ways of standardising transferability assessments are appropriate for data-rich 295 scenarios. However, models are usually transferred because data are lacking for the target 296 system, making direct validation challenging. Where sufficient predictor data are available,

297 model transferability can still be tested and result in informative predictions (Fig. 3; data-298 sparse scenarios). Trust in transferred predictions, however, can be increased by selecting 299 models that have already been successfully transferred to other analogous target system(s), in 300 a similar way as hindcasting is used to increase confidence in climate change predictions 301 (REF?). Resulting predictions should then be used to inform new survey designs for the 302 target system, and validation should be contemplated as these data become available. Such 303 procedures can provide transparent assessments prior to decision-making, and allow for 304 adaptive learning in support of in the best possible management outcomes at each step. The 305 'holy grail' of model transferability is, clearly, to achieve reliable predictions into unsampled 306 space/time, an exercise which involves some kind of extrapolation (mathematical, 307 geographical or combinatorial, i.e., derived from novel combinations of covariates within the 308 univariate range). Indeed, overcoming challenges associated with predicting into unknown 309 space/time is becoming urgent in face of the accelerating environmental change.

310 The Uncharted Waters of Mathematical Extrapolation: "Here Be Monsters"?

311 More and more models are being projected into non-homologous environments (Elith et al. 312 2011), even though predictions obtained under previously unobserved conditions are prone to 313 both statistical and ecological error (Dormann 2007). Despite potential errors, the immediate 314 need for solutions to wildlife management problems within new temporal or spatial domains 315 often overrides caution in extrapolation, with forecasts frequently treated as reliable despite 316 known risks (Fitzpatrick and Hargrove 2009). Because the consideration of such risks is 317 central to effective decision-making, the development of techniques that can diagnose or 318 address the consequences of extrapolation when transferring models is a research priority 319 (Araujo and Guisan 2006).

320 Various strategies have been suggested for dealing with extrapolation including
321 avoidance, mitigation, and explicit description. The 'avoidance' strategy is based on the

322	subjective rule of thumb that extrapolation errors increase with distance from the envelope of
323	the observed data. If predictions are not made beyond $1/10^{\text{th}}$ of the sampled parameter range,
324	extrapolation might be considered negligible (Dormann 2007). Extrapolation effects can also
325	be mitigated by minimising the likelihood of encountering novel combinations of
326	environmental conditions, e.g., by modelling the complete range of a species given its
327	dispersal abilities and any major biogeographical transitions when projecting future
328	distributions (Thuiller et al. 2004). Methodologies have also been proposed to explicitly
329	highlight extrapolated predictions, e.g. by discriminating the areas where the data used most
330	resemble the characteristics of the reference system. Examples include the Multivariate
331	Environmental Similarity Surface (MESS) within MaxEnt, which relies only on a rectilinear
332	(univariate) detection of extrapolation. Other techniques such as 'extrapolation detection',
333	'environmental overlap mask', 'envelope uncertainty maps', 'prediction uncertainty
334	assessments using residual variation', and 'mobility-oriented parity' are also capable of
335	highlighting different types of environmental novelty arising from mathematical and
336	combinatorial extrapolation.
337	Ultimately, the 'monsters' that lurk in the waters of extrapolation will be less
338	ferocious if the uncertainties underlying model projections are not ignored. Just as mean
339	values should be reported with their associated confidence intervals, there is mounting
340	support for reporting of extrapolated results in prediction maps (Fitzpatrick and Hargrove
341	2009, Mesgaran et al. 2014). Because excluding areas as uninhabitable is currently
342	impossible for most taxa, particularly data-poor ones (Fitzpatrick and Hargrove 2009),
343	validation of results will need to be prioritized. Importantly, wherever possible, extrapolation
344	results should be tested to improve the performance of transferred models through adaptive
345	learning (Dormann 2007).

346 Towards Better Practice in Model Transferability

347 A number of rules of good practice for testing model transferability have already been put 348 forward in the literature and are summarised in Table 1. Key principles highlighted relate to 349 the consideration of species characteristics, chosen predictors, and modelling approaches 350 (Werkowska et al. 2017). For example, it has been suggested that only models of species 351 whose physiological constraints will remain similar throughout their ranges should be used 352 for testing (Pearman et al. 2008). While such constraints might be difficult to establish, one 353 possible way to promote best practise would be to compare forecasts from transferred models 354 only for species for which hindcasting has demonstrated good predictive performance 355 (Kharouba et al. 2009b). Predictions of species distributions in different areas should also be 356 tested (Lauria et al. 2015) including those separated by thousands of km (Sundblad et al. 357 2009, Sequeira et al. 2016). Suggestions that individual species traits and functional groups 358 should be well known prior to testing transferability have also been put forward, as well as 359 the previous assessment of the effects of population demographics and conservation status. 360 Furthermore, competition among species should also be considered, especially when such 361 interactions are dynamic.

The careful choice of predictors has been advised due to potential effects of using proxy data and scale dependencies (see Table 1 for details). In particular, the discriminative ability and effect sizes of the predictor variables should be assessed before models are transferred. Also, predictors included in the models, their estimated coefficients, and resulting predictions should all be fully reported. Exploration of other traits (e.g., fine scale traits such as molecular data), that might be more correlated with specific geographical features, has also been encouraged.

Best practice in modelling includes careful checks of model assumptions, and
reporting on residuals to allow better interpretation of the results. The use of multiple

371	modelling approaches should also be considered to test appropriateness for different
372	applications. This will be useful to reduce or quantify uncertainty, acknowledging though that
373	models resulting in good internal evaluation (and interpolation) will not always transfer well.
374	The effects of model complexity should also be explored, as they are highly dependent on the
375	system and on the data at hand. Finally, we argue here that best practice should include
376	standardisation of the presentation of results to facilitate cross-studies comparison and allow
377	for general improvements in model transferability and in our understanding of what affects or
378	hinders the transferability of biodiversity models. We therefore suggest that model
379	transferability studies specifically include a summary section where each of the optional
380	sections are clearly stated (Box 1).
381	Conclusion
382	The future of model transferability and its utility for conservation and management will rely
383	on the careful consideration of each of the above recommendations, together with the
384	presentation of standardised results from transferability assessments. To promote advances in
385	model transferability, we propose that ten key points should be addressed. While the focus of
386	this manuscript is on correlative models, most of these guidelines will also be applicable to
387	mechanistic models:
388	1- Define the situation according to scheme presented in Fig 1
389	2- Summarise the relationships between predictor and response variables in the
390	reference and target systems
391	3- Justify assumptions and check their validity where possible
392	4- Decide on the strategy to use to deal with extrapolation: avoidance, mitigation
393	or discrimination
394	5- Check the list of suggestions for best practise included in Table 1 and address
395	the relevant points for the study

396	6- Decide on the modelling approach; using the procedure most suitable for the
397	study, implementing a suite of algorithms and selecting the best performing one, or
398	using an ensemble approach
399	7- Develop reference models following Fig. 3, depending on the amount of data
400	available for the study
401	8- Check model fit and assess model performance focusing on:
402	a. Evaluation by reporting the basic statistics that can be used to calculate
403	common metrics, including R2 (as a minimum)
404	b. Predictive power by using the SSIM, where applicable (i.e., data-rich
405	scenarios)
406	9- Clearly indicate where predictions are the result of extrapolation
407	10- Report a minimum standardized set of results to facilitate comparisons
408	between studies (see BOX 1).
409	
410	Transferring predictive biodiversity models has the potential to become a time- and
411	cost-effective tool for management and conservation, provided it is done in a consistent way
412	that guarantees transparency, comparability and confidence in model outputs. The
413	information we synthesise here (Table 1 and Fig. 3) can assist in dealing with different
414	scenarios where model transfers may be helpful. The careful consideration of the issues we
415	outline will improve the performance of model transfers in ecological studies and
416	management practice, and more importantly, will help us learn what confers transferability on
417	biodiversity models. As our understanding increases, our recommendations may evolve but
418	the need for standardisation will remain. Lastly, because model transferability is relevant in
419	other fields, such as transport (Rashidi et al. 2013), health and economics (Drummond et al.
420	2009), and urban pollution (Patton et al. 2015), cross-fertilization among these communities

- 421 of practice has the potential to further enhance our confidence in transferring models, their
- 422 resulting predictions, and their application to real-world situations.

423	References
424	Araujo, M. B., and A. Guisan. 2006. Five (or so) challenges for species distribution
425	modelling. Journal of Biogeography 33:1677-1688.
426	Austin, M. P., and J. A. Meyers. 1996. Current approaches to modelling the environmental
427	niche of eucalypts: Implication for management of forest biodiversity. Forest Ecology
428	and Management 85:95-106.
429	Barbosa, A. M., R. Real, and J. M. Vargas. 2009. Transferability of environmental
430	favourability models in geographic space: the case of the Iberian desman (Galemys
431	pyrenaicus) in Portugal and Spain. Ecological Modelling 220:747-754.
432	Bell, D. M., and D. R. Schlaepfer. 2016. On the dangers of model complexity without
433	ecological justification in species distribution modeling. Ecological Modelling
434	330 :50-59.
435	Broennimann, O., U. A. Treier, H. Müller-Schärer, W. Thuiller, A. Peterson, and A. Guisan.
436	2007. Evidence of climatic niche shift during biological invasion. Ecology Letters
437	10 :701-709.
438	Buckley, L. B., M. C. Urban, M. J. Angilletta, L. G. Crozier, L. J. Rissler, and M. W. Sears.
439	2010. Can mechanism inform species' distribution models? Ecology Letters 13:1041-
440	1054.
441	Cuddington, K., M. J. Fortin, L. R. Gerber, A. Hastings, A. Liebhold, M. O'Connor, and C.
442	Ray. 2013. Process-based models are required to manage ecological systems in a
443	changing world. Ecosphere 4.
444	Dobrowski, S. Z., J. H. Thorne, J. A. Greenberg, H. D. Safford, A. R. Mynsberge, S. M.
445	Crimmins, and A. K. Swanson. 2011. Modeling plant ranges over 75 years of climate
446	change in California, USA: temporal transferability and species traits. Ecological
447	Monographs 81 :241-257.

448	Dormann, C. F. 2007. Promising the future? Global change projections of species
449	distributions. Basic and Applied Ecology 8:387-397.
450	Drummond, M., M. Barbieri, J. Cook, H. A. Glick, J. Lis, F. Malik, S. D. Reed, F. Rutten, M.
451	Sculpher, and J. Severens. 2009. Transferability of Economic Evaluations Across
452	Jurisdictions: ISPOR Good Research Practices Task Force Report. Value in Health
453	12 :409-418.
454	Duque-Lazo, J., H. van Gils, T. Groen, and R. Navarro-Cerrillo. 2016. Transferability of
455	species distribution models: The case of Phytophthora cinnamomi in Southwest Spain
456	and Southwest Australia. Ecological Modelling 320 :62-70.
457	Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F.
458	Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G.
459	Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J.
460	Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberón, S. Williams,
461	M. S. Wisz, and N. E. Zimmermann. 2006. Novel methods improve prediction of
462	species' distributions from occurrence data. Ecography 29:129-151.
463	Elith, J., M. Kearney, and S. Phillips. 2010. The art of modelling range-shifting species.
464	Methods in Ecology and Evolution 1:330-342.
465	Elith, J., and J. R. Leathwick. 2009. Species distribution models: ecological explanation and
466	prediction across space and time. Annual Review of Ecology, Evolution and
467	Systematics 40 :677-697.
468	Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, and C. J. Yates. 2011. A statistical
469	explanation of MaxEnt for ecologists. Diversity and Distributions 17:43-57.
470	Fielding, A. H., and P. F. Haworth. 1995. Testing the generality of bird-habitat models.
471	Conservation Biology 9:1466-1481.

472	Fitzpatrick, M. C., and W. W. Hargrove. 2009. The projection of species distribution models
473	and the problem of non-analog climate. Biodiversity and Conservation 18:2255-2261.
474	Forester, B. R., E. G. DeChaine, and A. G. Bunn. 2013. Integrating ensemble species
475	distribution modelling and statistical phylogeography to inform projections of climate
476	change impacts on species distributions. Diversity and Distributions 19:1480-1495.
477	Franklin, J. 2010. Mapping species distributions - spatial inference and prediction.
478	Cambridge University Press, New York, United States of America.
479	Fronzek, S., T. Carter, and M. Luoto. 2011. Evaluating sources of uncertainty in modelling
480	the impact of probabilistic climate change on sub-arctic palsa mires. Natural Hazards
481	and Earth System Sciences 11:2981-2995.
482	García-Callejas, D., and M. B. Araújo. 2015. The effects of model and data complexity on
483	predictions from species distributions models. Ecological Modelling.
484	Grenouillet, G., L. Buisson, N. Casajus, and S. Lek. 2011. Ensemble modelling of species
485	distribution: the effects of geographical and environmental ranges. Ecography 34:9-
486	17.
487	Heikkinen, R. K., M. Marmion, and M. Luoto. 2012. Does the interpolation accuracy of
488	species distribution models come at the expense of transferability? Ecography 35:276-
489	288.
490	Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative
491	Biology 22 :415-427.
492	Kearney, M. R., B. A. Wintle, and W. P. Porter. 2010. Correlative and mechanistic models of
493	species distribution provide congruent forecasts under climate change. Conservation
494	Letters 3 :203-213.

495	Kharouba, H. M., A. C. Algar, and J. T. Kerr. 2009a. Historically calibrated predictions of
496	butterfly species' range shift using global change as a pseudo-experiment. Ecology
497	90 :2213-2222.
498	Kharouba, H. M., A. C. Algar, and J. T. Kerr. 2009b. Historically calibrated predictions of
499	butterfly species' range shift using global change as a pseudo-experiment. Ecology
500	90 :2213-2222.
501	Koricheva, J., J. Gurevitch, and K. Mengersen. 2013. Handbook of meta-analysis in ecology
502	and evolution. Princeton University Press.
503	Lauria, V., A. M. Power, C. Lordan, A. Weetman, and M. P. Johnson. 2015. Spatial
504	transferability of habitat suitability models of Nephrops norvegicus among fished
505	areas in the Northeast Atlantic: sufficiently stable for marine resource conservation?
506	PLoS ONE 10 :e0117006.
507	Legendre, P., and L. Legendre. 2012. Numerical ecology. 3rd English edition. Elsevier,
508	Amsterdam, The Netherlands.
509	Margules, C. R., and R. L. Pressey. 2000. Systematic conservation planning. Nature 405:243-
510	253.
511	Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen, and W. Thuiller. 2009. Evaluation
512	of consensus methods in predictive species distribution modelling. Diversity and
513	Distributions 15:59-69.
514	Martin, J., E. Revilla, PY. Quenette, J. Naves, D. Allainé, and J. E. Swenson. 2012. Brown
515	bear habitat suitability in the Pyrenees: transferability across sites and linking scales
516	to make the most of scarce data. Journal of Applied Ecology 49:621-631.
517	Mesgaran, M. B., R. D. Cousens, and B. L. Webber. 2014. Here be dragons: A tool for
518	quantifying novelty due to covariate range and correlation change when projecting
519	species distribution models. Diversity and Distributions 20 :1147-1159.

520	Moreno-Amat, E., R. G. Mateo, D. Nieto-Lugilde, N. Morueta-Holme, JC. Svenning, and I.
521	García-Amorena. 2015. Impact of model complexity on cross-temporal transferability
522	in Maxent species distribution models: An assessment using paleobotanical data.
523	Ecological Modelling 312 .
524	Patton, A. P., W. Zamore, E. N. Naumova, J. I. Levy, D. Brugge, and J. L. Durant. 2015.
525	Transferability and Generalizability of Regression Models of Ultrafine Particles in
526	Urban Neighborhoods in the Boston Area. Environmental Science & Technology
527	49 :6051-6060.
528	Pearman, P. B., C. F. Randin, O. Broennimann, P. Vittoz, W. O. v. d. Knaap, R. Engler, G. L.
529	Lay, N. E. Zimmermann, and A. Guisan. 2008. Prediction of plant species
530	distributions across six millennia. Ecology Letters 11:357-369.
531	Peterson, A. T., M. Papes, and M. Eaton. 2007. Transferability and model evaluation in
532	ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550-
533	560.
534	Phillips, S. J. 2008. Transferability, sample selection bias and background data in presence-
535	only modelling: a response to Peterson et al. (2007). Ecography 31:272-278.
536	Possingham, H. P., H. Grantham, and C. Rondinini. 2007. How can you conserve species that
537	haven't been found? Journal of Biogeography 34:758-759.
538	Randin, C. F., T. Dirnböck, S. Dullinger, N. E. Zimmermann, M. Zappa, and A. Guisan.
539	2006. Are niche-based species distribution models transferable in space? Journal of
540	Biogeography 33 :1689-1703.
541	Rashidi, T. H., J. Auld, and A. Mohammadian. 2013. Effectiveness of Bayesian Updating
542	Attributes in Data Transferability Applications. Transportation Research Record:1-9.
543	Robinson, L. M., J. Elith, A. J. Hobday, R. G. Pearson, B. E. Kendall, H. P. Possingham, and
544	A. J. Richardson. 2011. Pushing the limits in marine species distribution modelling:

545	lessons from the land present challenges and opportunities. Global Ecology and
546	Biogeography 20 :7889-7802.
547	Schadt, S., E. Revilla, T. Wiegand, F. Knauer, P. Kaczensky, U. Breitenmoser, L. Bufka, J.
548	Cerveny, P. Koubek, T. Huber, C. Stanisa, and L. Trepl. 2002. Assessing the
549	suitability of central European landscapes for the reintroduction of Eurasian lynx.
550	Journal of Applied Ecology 39 :189-203.
551	Sequeira, A. M. M., C. Mellin, D. A. Fordham, M. G. Meekan, and C. J. A. Bradshaw. 2014.
552	Predicting current and future global distributions of whale sharks. Global Change
553	Biology 20 :778–789.
554	Sequeira, A. M. M., C. Mellin, H. M. Lozano-Montes, M. A. Vanderklift, R. C. Babcock, M.
555	Haywood, J. J. Meeuwig, and M. J. Caley. 2016. Transferability of predictive models
556	of coral reef fish species richness. Journal of Applied Ecology 53:64-72.
557	Sundblad, G., M. Härmä, A. Lappalainen, L. Urho, and U. Bergström. 2009. Transferability
558	of predictive fish distribution models in two coastal systems. Estuarine, Coastal and
559	Shelf Science 83 :90-96.
560	Thuiller, W., L. Brotons, M. B. Araujo, and S. Lavorel. 2004. Effects of restricting
561	environmental range of data to project current and future species distributions.
562	Ecography 27 :165-172.
563	Torres, L. G., P. J. H. Sutton, D. R. Thompson, K. Delord, H. Weimerskirch, P. M. Sagar, E.
564	Sommer, B. J. Dilley, P. G. Ryan, and R. A. Phillips. 2015. Poor transferability of
565	species distribution models for a pelagic predator, the Grey Petrel, indicates
566	contrasting habitat preferences across ocean basins. PLoS ONE 10:e0120014.
567	Vaughan, I., and S. Ormerod. 2005. The continuing challenges of testing species distribution
568	models. Ecology 42 :720-730.

569	Wang, L., and D. A. Jackson. 2014. Shaping up model transferability and generality of
570	species distribution modeling for predicting invasions: implications from a study on
571	Bythotrephes longimanus. Biological Invasions 16:2079-2103.
572	Warren, D. L., R. E. Glor, and M. Turelli. 2008. Environmental Niche Equivalency Versus
573	Conservatism: Quantitative Approaches to Niche Evolution. Evolution 62:2868-2883.
574	Warren, D. L., R. E. Glor, and M. Turelli. 2010. ENMTools: a toolbox for comparative
575	studies of environmental niche models. Ecography 33 :607-611.
576	Wenger, S. J., and J. D. Olden. 2012. Assessing transferability of ecological models: an
577	underappreciated aspect of statistical validation. Methods in Ecology and Evolution
578	3 :260-267.
579	Werkowska, W., A. L. Márquez, R. Real, and P. Acevedo. 2017. A practical overview of
580	transferability in species distribution modeling. Environmental Reviews 25:127-133.
581	Wiens, J. J., and C. H. Graham. 2005. Niche conservatism: integrating evolution, ecology,
582	and conservation biology. Annual Review of Ecology, Evolution, and

583 Systematics:519-539.

585 Acknowledgements

- 586 AMMS was supported by an IOMRC (UWA/AIMS/CSIRO) collaborative Postdoctoral
- 587 Fellowship and by ARC grant DE170100841. PJB received support from the Marine
- 588 Biodiversity Hub within the Australian Government's National Environmental Science
- 589 Programme. Thanks to H. Lozano-Montes, J. Meeuwig and E. Peterson for early discussions
- 590 on the relevance of a synthesis on the transferability of biodiversity models.

591

592 Data accessibility

593 NA.

595	Box 1	. Summary section needed for standardisation of the presentation of results from model
596	trans	fer studies
597	1.	Type of transferability (as per Fig. 1)
598	2.	Summary of range of responses and predictors (e.g., boxplot)
599	3.	Assumptions made (equilibrium, stationarity, environment versus human drivers, space-for-time
600		substitutability)
601	4.	Models and algorithms used
602	5.	Data scenario: rich, sparse, poor
603	6.	Summary of model fit and performance (including R^2 as a minimum, and SSIM where applicable).
604		

605 **Tables**

Table 1: Summary of features reported so far to affect model transferability.

- 607 Some features have been reported to clearly improve (green; +) or impair (red; -) model transferability. Others have yielded conflicting results in empirical
- studies, and their influence is therefore unclear (grey; +/-). References are provided in the Supplementary Information Appendix S1.

Feature	Effect	Explanation	Ref.
Field sampling			
Larger than known geographic extent	+	To guarantee that the tails of a species' response curve are adequately captured.	[5, 76]
Central position within the species range	+	As species thrive in a more varied array of habitats at the centre of their distribution and are more restricted to specialized habitats towards the margins.	[65, 87]
Large sample size	+	To capture variability in habitat conditions and to allow more precise estimates of model parameters.	[61, 88, 93]
Systematic vs. random design	+/-	Systematic sampling may lead to wider environmental coverage and reduce autocorrelation. However, random sampling has desirable statistical properties and avoids spatial bias.	[23, 40]
Uneven or incomplete coverage	-	As biased sampling may add noise to the data, constrain the range of habitat variability being captured, and introduce taxonomic and environmental biases.	[6, 48, 81]
Imperfect detectability	-	May lead to biased samples and misleading inferences of species-environment relationships.	[18, 95]
Model building, calibration and validation			
Model training in more than one region	+	Multi-region models place less emphasis on locally dominant environmental features making them more structurally similar and transferable.	[4, 32, 80]
Correct choice of calibration areas	+	May reduce the rate of false positives.	[21]
Validation with independent data	+	Allows for objective assessment of predictions to novel conditions and of the relative importance and nature of uncertainty sources.	[20, 28, 32, 82]

Accounting for true absences	+	True absences contain valuable information on the conditions that are unfavourable for a given species, and support the modelling of the realized, rather than potential, distributions.	[44]
Choice of model algorithm	+/-	No superior method has yet been identified (refer to text for details).	[22]
Model complexity	+/-	Complex models may overfit data while simpler models often yield better transferability, but more needs to be learned.	[30, 39, 47, 53, 55, 57, 83]
Direction of model transferability test	+/-	Can depend on asymmetries in environments or be species-specific.	[43, 65, 73]
Calibration and projection at different scales (local vs. regional)	+/-	Regional model stability tends to be site and taxon-specific while adjacent areas are more likely to be similar.	[7, 52, 59, 71, 77]
Accounting for autocorrelation	+/-	Reducing autocorrelation may be necessary, but the added autocorrelation term may fail to account for some biological structure affecting transferability.	[14, 35, 69, 74]
Multi-model inference and model averaging	+/-	Consensus forecasts are generally seen as more robust, though recent studies suggest that their extrapolative performance may be species- and context-specific.	[10, 15, 68]
Model misspecification	-	Erroneous choices of error distributions may limit the effectiveness of model transferability.	[47]
Overfitting	-	Can lead to weak correlations among variables and incorrect inferences.	[65, 85]
Data and predictor variables			
Use of direct, functional and ecologically relevant predictors	+	To allow estimation of ecologically sound predictor-response relationships.	[16, 32, 65, 73, 80]
Large training dataset	+	To minimising the variance in parameter estimates.	[72, 84]
Including biotic interactions	+	To better describe species distributions and range margins at broad spatial extents, thereby maximising model transferability.	[2, 8, 31, 36, 41, 62, 79, 89]
Higher quality and resolution of predictors	+	To capture relevant ecological processes and detect local variations more effectively.	[3, 5, 38, 80]

Adequate geographical projection	+	To minimise biases associated with grid-cell sizes (i.e., increased apparent sample size at high latitudes as a degree of longitude decreases in length from the equator to the poles)	[12]
Use of independent remote sensing data	+	To capture complex spatial features where data are and measure environmental variability directly indicating limiting environmental conditions beyond climatic suitability.	[13, 17]
Inclusion of climatic extremes	+	Because they affect demographic processes including growth, regeneration and mortality in some organisms.	[94]
Contingent absences	+	To improve descriptive and predictive potential of models.	[5]
Use of surrogate predictors	-	May fail to express the true habitat requirements of the species, particularly if relationships vary spatially and temporally.	[16, 32, 65, 73, 80]
Multicollinearity	-	Can lead to the misidentification of the most relevant predictors and biases in estimated coefficients and their standard errors.	[33, 45, 78]
Type of scenario in climate projections	-	May lead to over-confidence in single maps of future distributions.	[27, 64]
Niche shifts	-	Can compromise model predictions.	[60]
Species			
Abundance data	+	Can improve detection of the relative suitability of habitats, particularly for species with low prevalence.	[42]
Assemblage composition	+	Enables the detection of general trends that are more immune to the idiosyncrasies of individual taxa.	[46, 63, 71]
Free movement in space	+	May provide better representation of suitable habitats.	[43]
Ecological traits	+/-	Are a species-specific characteristic but can result in greater model transferability.	[1, 20, 26, 37, 54, 65, 75, 92]
Endemism	+/-	Should result in better species-habitat relationships but some studies have found better transferability of models based on non-endemic species.	[20, 43]

Prevalence and rarity	+/-	Common species yield more false positive predictions, whilst more false negatives are expected for rarer taxa, suggesting that intermediate levels of prevalence may be optimal for transferability.	[20, 28, 34, 49, 65, 67]
Eurytopic species	-	May persist in a wide array of conditions that are not easily defined by data, independent variables or model design.	[25, 70, 72]
Dispersal ability	-	Is a source of autocorrelation likely to influence the accuracy of projections across time and space in changing environments.	[14, 20, 90]
Behavioural plasticity	-	Model projections may be misleading if the capacity of a species to adapt to new conditions is ignored.	[58]
Ecotypes		Being selectively adapted to localised environmental conditions, model transferability may not be applicable.	[65]
Environment			
Non-analogue conditions	-	May result in the truncation of species response curves under unobserved conditions rendering extrapolating risky.	[9, 24, 29, 50, 56, 66, 76, 77, 91, 96]
Non-stationarity	-	Will impede model transferability due to inconsistent relationships across space or time.	[43, 86]
History of human use	_	May lead to inconsistent model transferability due to different disturbance regimes, management practices, or histories of human use between regions/times.	[11, 19, 51, 53]

610 Table 2: Metrics used for assessment of model transferability (i.e., external evaluation)

All metrics are used for presence-absence or presence-only (PO) data and result in a score between 0 and 1 (or 0 and 100 %), with the exception of the c-index, which varies between 0.5 and 1. P: probability distribution with x_1 and x_2 representing the response variable predicted by the two models being compared; *cov*: covariance; σ : standard deviation; A and B represent distinct spatial regions; TP, FP, FN and TN refer to each position in a confusion matrix including true positives, false positive, false negative and true negatives, respectively; N: sum of all positives and negatives. Examples of the use of each metric in a model transferability context are given in the last column. For AUC, *'i'* represents a range of cut-off values used to build the plot of sensitivity (SE) versus 1 – specificity (SP).

Metric	Calculation / Definition	References (see Appendix S2)
Presence-only data		
*Modified Hellinger Distance (I similarity statistic)	$I = 1 - \frac{1}{2} \sqrt{\sum_{i} (\sqrt{P_{X1}} - \sqrt{P_{X2}})^2}$	[6, 14, 15, 16]
*Schoener's D	$D = 1 - \frac{1}{2} \sum_{i} P_{X1} - P_{X2} $	[15, 17]
Presence-absence data		
Accuracy (overall)	$ACC = \frac{TP + TN}{N} \times 100$	[1]
Area under the curve (AUC) (or concordance c- index)	$AUC = \sum_{i=2}^{N} \frac{SE_i + SE_{i-1}}{2} x SP_{i-1} - SP_i $	[2-7]

Coefficient of determination (or Calibration curve; CU)	$R^{2} = 1 - \frac{Residual \ sum \ of \ squares}{Total \ sum \ of \ squares}$	[8-10]
Cohen's Kappa	$K = \frac{(TP + TN) - \frac{(TP + FN)(TP + FP) + (FP + TN)(FN + TN)}{N}}{N - \frac{(TP + FN)(TP + FP) + (FP + TN)(FN + TN)}{N}}$	[2, 11 – 12]
Correct classification rate	$CCR = \frac{TP + TN}{N}$	[2, 4, 9]
Extrapolative transferability index	$CCR = \frac{TP + TN}{N}$ $EX - TR = \frac{AUC_{Extrapolated}}{AUC_{Internal}}$	[12]
Minimal predicted area	$MPA = \frac{Pixels \ above \ specified \ threshold}{N}$	[13]
Percentage of FN or FP	-	[5]
*Point biserial (Pearson correlation)	$\rho = \frac{cov(x, y)}{\sigma_x \sigma_y}$	[10]
Sensitivity	$SE = \frac{TP}{TP + FP}$	[1, 4, 18, 19]
Spearman Rank	$\rho = \frac{cov(x_{ranked}, y_{ranked})}{\sigma_{x_{ranked}}\sigma_{y_{ranked}}}$	[10, 20 – 22]
Specificity	$SP = \frac{TN}{FP + TN}$	[4]
Transferability index	$\mathrm{TRI} = \frac{\frac{1}{2} \left(\left(1 - \frac{ AUC_{A \to A} - AUC_{A \to B} }{0.5} \right) + \left(1 - \frac{ AUC_{B \to B} - AUC_{B \to A} }{0.5} \right) \right)}{1 + \left \left \frac{AUC_{A \to A} - AUC_{A \to B}}{0.5} \right - \left \frac{AUC_{B \to B} - AUC_{B \to A}}{0.5} \right \right }$	[11]
Transferability test (one-sided χ^2 test)	$TR = \frac{\sqrt{N} (TP TN - FP FN)}{\sqrt{(TP + FP)(FN + TN)(TP + FN)(FP + TN)}}$	[23, 24]

True skill statistic	$TSS = \frac{TP TN - FP FN}{(TP + FN)(FP + TN)}$	[25]
Abundance data		
Coefficient of determination	$R^{2} = 1 - \frac{Residual \ sum \ of \ squares}{Total \ sum \ of \ squares}$	[9 10]
(or Calibration curve; CU)	$K = 1 - \frac{1}{Total sum of squares}$	[8 - 10]
Spearman Rank	$\rho = \frac{cov(x_{ranked}, y_{ranked})}{\sigma_{x_{ranked}}\sigma_{y_{ranked}}}$	[10, 20 - 22]
1	$\sigma_{x_{ranked}}\sigma_{y_{ranked}}$	L / J
	$\text{Dif} = y_{target} - y_{reference} $	
Absolute difference (or root- mean square difference)		[26]
	$\left(\text{RMS} = \sqrt{\frac{1}{n} (x_1^2 + x_2^2 + \dots + x_n^2)} \right)$	
	$\setminus \vee^{n}$	

618 **Figure captions**

619

620 Figure 1. Examples of range of conditions where model transferability might be tested. 621 'Internal' refers to conditions modelled in the reference system, while 'External' to model 622 transfers to a target system (adapted from Mesgaran et al. 2014). The slope of each ellipse 623 reflects the nature of the relationship between the associated variables in the x and y axes. In 624 a) we consider scenarios in which the range of response and predictor variables varies in both 625 the reference and target systems. For example, the range of predictor and response variables 626 might overlap (External 1), the external range of predictors might fall within that of internal 627 (i.e., could be External 2 on 'a') but the range of the response variable differ and the 628 relationship might also different (External 2), the range of predictors might overlap in both 629 systems but not the range of responses however response predictor relationship (slope) is 630 similar (External 3), and the range of predictors might differ in both systems but the range of 631 responses is same as is the relationship (slope) between response and predictor variables 632 (External 4). In b) we consider examples concerning the range of values for two 633 environmental predictors used in each system and showing situations where: the external 634 range of predictors lies within the range of internal predictors (External 5), there is some 635 overlap in predictor range (External 6), and no overlap in predictors (External 7). 636 637 **Figure 2.** Temporal trends in published papers related to biodiversity models (lighter colours) 638 and model transferability (darker colours). Bars indicate the cumulative number of peer-639

reviewed journal articles listed on the ISI Web of Science (webofknowledge.com). Search

- 640 details included in Supplementary Information.
- 641

642 Figure 3: Summary of possible scenarios and recommended actions when testing model 643 transferability. Transferability refers to the predictive performance of a model developed at a 644 reference location and used to make predictions at a different target location. The transfer 645 possibilities and the actions that can be undertaken depend on the availability of data for the 646 response and predictor variables, and occur or 'data rich' situation. For example, in a 'data 647 sparse' situation, home ranges for Eurasian Lynx were predicted in Germany based on data 648 from the Swiss Jura Mountains (action 1) and then validated results using telemetry data from 649 Czech Republic and Slovenia (action 2) (image adapted from Schadt et al. (2002), and photo 650 credit to National Geographic). The future geographical distribution of whales sharks ('data 651 deficient' situation) was predicted based on existing knowledge for their occurrence and 652 using modelled sea surface temperature for 2070 (action 1) while assuming that relationships 653 between response and predictors will be maintained (action 2) (image adapted from Sequeira 654 et al. (2014), and photo credit to Brian J. Skerry; National Geographic). The distributions of 655 the Iberian desman were predicted comparing results from a reference and target model with 656 validation data (actions 1 and 2, 'data rich' situation) before producing a general model 657 combining data from both reference and target locations (action 3) (image adapted from 658 Barbosa et al. (2009) and photo credit to Réseau Education Pyrénées Vivantes). 659

Figure 4: Application of the SSIM approach in a model transferability context adapted from Sequeira et al. (2016). Here we show that local means and variances between the predictions obtained for NR from the transferred GBR and the NR predictions derived from the NR model are similar (SIM = 0.992; SIV = 0.691). The pattern of spatial covariance is also positively correlated in both maps (SIP = 0.122). The overall SSIM obtained thus reflects the combination of the three components (0.992 x 0. 691 x 0.122 = 0.080) resulting in only a slightly positive similarity between the transferred and the native maps for NR.

Glossary

675	Biodiversity models: family of predictive statistical models commonly known as "species
676	distribution models", "environmental niche models", "resource selection functions", "habitat
677	suitability" or "distribution models" or "climate envelope" or "climate matching models",
678	and including those operating at a community level (e.g., species richness and total
679	abundance as response variables).
680	Geographical extrapolation: prediction made for an area beyond the location where
681	calibration data were collected, but where predictor values remain within the range of
682	observed values.
683	Interpolation: prediction made within the range of parameter values used during model
684	calibration, where the relationships between the response and predictor variables are known
685	(e.g., prediction for the area within two sampled points).
686	Mathematical extrapolation: prediction made beyond the range of parameter values used
687	during model calibration and beyond known relationships between the response and predictor
688	variables.
689	Model generality (also known as "generalizability"): a model's ability to capture species-
690	environment interactions, and therefore, be applied across a large number of systems or
691	conditions (model-focused concept).
692	Model transferability: a model's ability to yield accurate and reliable predictions of a given
693	response variable in a new context, be in another geographical area, time period, or both
694	(Elith and Leathwick 2009) (data-focused concept) - commonly and interchangeably referred
695	to in the literature as "hindcasting", "forecasting" or "back-casting", "generality" or
696	"generalizability", "interpolation" or "extrapolation", and also "projection".
697	Predictor : independent variable used to predict the value of a dependent/response variable.
698	Target : system (location or time) to where a model is transferred.