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 14 

The deep ocean is the largest and least explored ecosystem on Earth, and a uniquely 15 

energy-poor environment. The distribution, drivers and origins of deep-sea biodiversity 16 

remain unknown at global scales1,2,3. Here we analyse a database of >165,000 17 

distribution records of Ophiuroidea (brittle stars), a dominant component of seafloor 18 

fauna, and find patterns of biodiversity unlike terrestrial or marine realms. Both 19 

patterns and environmental predictors of deep-sea (2000-6500 m) species richness 20 

fundamentally differs from those found in coastal (0-20 m), continental shelf (20-200 m), 21 

and upper slope waters (200-2000 m). Continental shelf to upper slope richness 22 

consistently peaks in tropical Indo-West Pacific and Caribbean (0-30°) latitudes, and is 23 

well explained by variation in water temperature. In contrast, deep-sea species shows 24 

maximum richness at higher latitudes (30-50°), concentrated in areas of high carbon 25 

export flux and close to continental margins. We reconcile this structuring of oceanic 26 

biodiversity using a species-energy framework, with kinetic energy predicting shallow-27 

water richness, while chemical (export productivity) energy and proximity to slope 28 

habitats driving deep-sea diversity.  Our findings provide a global baseline for 29 

conservation efforts across the seafloor, and demonstrate that deep-sea ecosystems show 30 

a biodiversity pattern consistent with ecological theory, despite being different from 31 

other planetary-scale habitats.  32 

 33 
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Deep-sea environments comprise approximately 66% of global seafloor area, and hence more 34 

than half of the planet’s surface4. The sinking of biological material to the seafloor is a 35 

critical part of the global carbon cycle and climate. Yet global patterns of seafloor diversity 36 

remain unknown, having so far been described only on local and regional scales4,5. Here we 37 

assemble a unprecedented dataset on the global distribution of 2,099 Ophiuroidea (brittle and 38 

basket stars) species from shallow to abyssal depths, comprising 165,044 species distribution 39 

records from 1,614 research expeditions. Ophiuroidea are an ideal model taxon to analyse 40 

global patterns of species diversity as they are a dominant component of the fauna of many 41 

deep-sea habitats6. These data provide a unique opportunity to uncover and compare deep-sea 42 

biodiversity patterns across three fundamentally different depth strata of the ocean, the 43 

continental shelf (20-200m), upper continental slope (200-2000m) and deep-sea (2000-44 

6500m)7,8. Furthermore, we propose that the deep-sea can be viewed as a third replicate 45 

biome (after terrestrial and shallow-water diversity) to untangle the role of fundamental 46 

processes that shape global diversity. We our analysed three bathymetric strata separately, 47 

spatially estimated and mapped total species richness across a global grid using multi-species 48 

hierarchical occupancy-detection models (MSODM) and formally tested a number of 49 

prominent hypotheses on the factors shaping deep-sea diversity patterns using spatial linear 50 

models (see Table S1) and a species-energy framework. 51 

Global patterns of species richness for shelf and upper slope species are congruent with those 52 

of coastal marine species9. Both communities show diversity peaks in the tropical Indo-West 53 

Pacific and the Western Atlantic Oceans (Fig. 1a-b). However, in contrast to previous work, 54 

we find relatively high regional species richness around southern Australia and New Zealand 55 

(Fig. 1b)9. Species richness is generally suppressed on the western side of tropical America 56 

and Africa, and the Northern Indian Ocean (Fig. 1a & b; Extended Data Fig. 2a & b). Deep-57 

sea species richness shows a markedly different pattern, with peaks occurring predominantly 58 

at mid-to-high latitudes (Fig. 1c; Extended Data Fig. 2c), particularly across the boreal 59 

Atlantic Ocean, around Japan, New Zealand, western North and South America and Western 60 

Africa. 61 

When global ophiuroid richness is examined by latitude and depth (Fig. 2), it peaks in the 62 

tropics at continental shelf (20-200 m) and upper-slope depths (200-1200 m). A strong 63 

latitudinal biodiversity gradient exists at these depths with reduced richness at mid-to-high 64 

latitudes (>45°S and >55°N). These results are congruent with prior studies of shallow-water9 65 

and terrestrial10 global diversity gradients that suggest a uni-modal diversity peak at low 66 
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latitudes. However, at lower-slope to intermediate abyssal depths (2000-6500m), bimodal 67 

maxima occur at temperate latitudes (30-40°S and 40-50°N), with distinct minima near the 68 

poles and at northern subtropical latitudes (15-30°N). Thus the typical latitudinal gradient of 69 

species richness observed near the planetary surface does not hold in the deep sea.  70 

We encode a priori hypotheses on processes expected to structure biodiversity11 by 71 

encapsulating them as potential drivers in a spatially-explicit statistical model (see list of 72 

hypotheses in Extended Data Table 1). Geographical variation in energy availability (the 73 

species-energy hypothesis) is a factor thought to shape terrestrial and marine global 74 

biodiversity11,12, through radiation (light), thermal (kinetic) or chemical (potential) energy. 75 

Unlike other realms, the first of these can be excluded from the aphotic deep-sea 76 

environment. Thermal energy may affect diversity through several mechanisms, including 77 

physiological tolerances, speciation/extinction rates, and availability of metabolic niches13. 78 

Chemical energy in the form of reduced organic compounds is hypothesised to promote 79 

species diversity13; in the deep-sea this would be reflected by food resource availability 80 

manifested as particulate organic carbon (POC) flux. Non-energetic factors tested included 81 

oxygen stress, reflected on the upper slope by oxygen minimization zones (OMZs)14; the 82 

environmental stress hypothesis proposes that species richness has a negative relationship 83 

with environmental stress15. Finally, long-term connectivity between shallower shelf and 84 

upper slope species to deep-sea communities is expected to affect species richness16, via the 85 

regulation of deep-sea populations through extinction and radiation of species from 86 

connected regions17.  Testing these hypotheses against patterns of deep-sea diversity helps 87 

disentangle the environmental, ecological and historical forces shaping global diversity. 88 

Our statistical models revealed that the species-energy hypothesis is broadly supported at all 89 

depths, albeit through different forms of energy (Table 1). A significant relationship (p < 90 

0.01) between richness and bottom water temperature emerges at shelf and upper slope 91 

depths, correlating with kinetic (specifically thermal) energy input from the sun. Strong 92 

thermal gradients are present in shelf and slope (but not deep-sea) regions, promoting greater 93 

species richness13,18. However, there is a significant negative correlation between the 94 

diversity of shelf and slope environments and chemical energy, measured as particulate 95 

organic carbon (POC) flux to the seafloor (Table 1; POC, p <0.05), likely because tropical 96 

shallow water systems tend to be nutrient poor. Conversely, deep-sea richness is not 97 

correlated with temperature but is significantly positively correlated with chemical energy 98 

export (Table 1; POC ; p < 0.01) and regions of high seasonal surface productivity (SVI; p < 99 
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0.01). POC export is likely to be a key source of energy that maintains deep-sea species in 100 

regions of constant and low thermal energy19-21. The diversity of shelf communities within 101 

the model is also suppressed in OMZs (Table 1; Oxygen Stress²: p < 0.05). These zones are 102 

dysoxic, with less than 2 ml O2 per litre of seawater, and are known to have substantially 103 

reduced faunal diversity and biomass14. Thus environmental stress appears to play a 104 

additional role in influencing global patterns of ophiuroid richness. For deep-sea 105 

environments, connectivity is also a significant predictor, with a decline in species diversity 106 

with distance from continental margins (Table 1; DC; p < 0.05). This finding implies that the 107 

continental margins are a long term source of abyssal diversity. This is consistent with the 108 

radiation hypothesis16 that predicts deep-water diversity is maintained by immigration from 109 

bathyal sources17.  110 

Observed patterns of deep-water diversity may shed some light on the drivers of large-scale 111 

gradients of diversity in other environments. Mannion, et al.22 suggested that two different 112 

classes of latitudinal diversity gradients occurred over the history of the Phanerozoic (542 113 

mya). A tropical maxima and polar minima existed during relatively cool ‘Icehouse’ 114 

conditions23 where there is a strong sea surface temperature divergence between equator and 115 

pole. Conversely, a flat diversity gradient or temperate peak occurred during warmer 116 

‘Greenhouse’ conditions, when there was less of a temperature gradient, indicating that 117 

thermal energy was likely a key driver of geographic variation in richness. Here we observe 118 

no tropical peak in diversity of deep-sea assemblages, suggesting that it is uniform 119 

temperatures rather than warm ‘greenhouse’ conditions that reduce low latitude diversity. Our 120 

results imply that energy availability determines the latitudinal diversity gradient, but in the 121 

deep sea, unlike the rest of the ocean, this derives from chemical rather than thermal sources.  122 

Currently, we know little about the evolutionary processes that at least partially gave rise to 123 

bathyal and abyssal species diversity patterns. Multiple hypotheses postulate in situ 124 

diversification, or immigration from shallower depths16,24. It is unclear how the abyssal and 125 

lower bathyal fauna re-establish after extinction events such as anoxia25. Our modelled 126 

estimates of species richness depict higher diversity on the upper-slope; these results lend 127 

support to the upper-slope being the source of deep-sea diversification. Observed patterns of 128 

species richness are highest near continents (Fig. 1), showing the relationship between deep-129 

water diversity and connectivity to continental margins (Table. 1). Thus our data and analyses 130 

lend support to the theory that the deep-sea fauna at least partially originates from range 131 

expansion of upper-bathyal species into the deep-sea. However, these suggested peaks of 132 
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diversity are also regions of high export productivity, a strong energetic predictor of richness. 133 

To better delineate the processes shaping evolutionary origins of deep-sea fauna, 134 

comprehensive phylogenies are required.  135 

In conclusion, our findings reveal a unique pattern global of deep-sea benthic biodiversity 136 

that is unlike any other environment. We are able to reconcile the vertical structuring of 137 

marine biodiversity through a species-energy framework, a fundamental theory of the 138 

origination of biodiversity. Our findings also support the radiation hypothesis, suggesting 139 

deep-water richness is maintained by immigration from shallower regions. These results have 140 

important implications for identifying potential protected areas on the high seas, both within 141 

and outside national jurisdictions. Tropical areas are typically highly diverse in shallow 142 

waters and on land, and thus often the focus for conservation efforts. In contrast, areas of 143 

higher export productivity and connectivity to shallower communities will need to be 144 

considered for conservation and management action in the deep-sea. Our results provide a 145 

much-needed empirical and spatial baseline for global conservation planning in the deep-146 

ocean, which is urgently motivated by the accelerating pressures from deep-sea fishing, 147 

mining and other cumulative impacts on this final frontier26.   148 
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 226 
Figure 1: Global patterns of ophiuroid species richness. Multispecies occupancy detection 227 

models (MSODM) of summed occupancy probabilities for (a) shelf diversity (20-200m), (b) 228 
slope diversity (200-2000m) and (c) deep-water diversity (2000-6500m). 229 
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 230 
Figure 2: Estimated mean ophiuroid species richness plot as a function of depth and 231 
latitude. Species richness predicted from MSODMs at depth intervals from surface to lower 232 

abyss depths for binned equal area latitudinal regions across the global extent of longitude. 233 
Mean species richness estimated from MSODMs for (a) shelf diversity (20-200m), (b) slope 234 
diversity (200-2000m) and (c) deep-water diversity (2000-6500m). The vertical dashed line 235 
represents the equator. The grey contour lines represent the top 20% of species richness for 236 
each bathome. 237 

 238 

 239 
 240 
 241 
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 242 

Table 1: Spatial linear model (SLM) results for the species richness of three bathomes: 243 
20-200m, 200-2000m and 2000-6500m Maximum species richness for each bathome is 244 
highest individual cell value. Model results are from the best SLM as determined by AIC 245 
value. Model results are z-values; stars represent significance levels at p >0.05 (ns), <0.05 246 
(*), <0.01 (**) or <0.0001 (***). Distance to continental margin is only applicable for deep-247 
water (LSA; lower-slope & abyss). 248 
 249 

Bathome 
20 – 200m 

(shelf) 

200 – 2000m 

(upper slope) 

2000 – 6500m (lower slope 

and abyss) 

Species Richness 126 110 31 

Annual Mean 

Temperature(AMO) 
11.49*** 3.61*** 

 

Annual Mean 

Temperature(AMO)² 
  -2.71**   

Annual Mean Oxygen 

(AMO) 
-2.17*   

Annual Mean Oxygen 

(AMO)² 
      

Seasonal variation in NPP 

(SVI) 
3.54** 

 
1.61** 

Seasonal variation in NPP 

(SVI)² 
-2.48*     

Particulate Organic Carbon 

flux (POC) 
-4.43* -3.06* 3.09** 

Particulate Organic Carbon 

flux (POC)²  
2.13*   -2.46* 

Distance to Continental 

Margin (DC) 
NA NA 0.45* 

Distance to Continental 

Margin (DC)² 
NA NA   

Oxygen Stress (OMZ)    

Oxygen Stress (OMZ)² 1.71*     

Pseudo-R² 0.35 0.37 0.21 

 250 

  251 
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Methods 252 

1. Data 253 

1.1 Biological data 254 

Global brittle-star occurrence data (84°N to 78°S latitude & 180°W to 180°E longitude) has 255 

been derived from 1614 research expeditions, covering a 130 year timespan, starting with 256 

iconic nineteenth century voyages such as the Challenger expedition1. Brittle-star species 257 

occurrence records were collected from three major bathomes: shelf (SH; 20 - 200m), slope 258 

(SL, 200 – 2,000m) and deep-water (lower slope and abyssal plane; LSA, 2,000 – 6,500m). 259 

These depth strata were selected to reflect existing biogeographical bounds of bathyal 260 

ophiuroids2. Ophiuroid occurrences at hadal depths (> 6,500m) were removed as the data 261 

were very sparse and would likely result in fragile inference of patterns at these deeps. 262 

Ophiuroidea identifications were verified by taxonomic experts to species level (including 263 

author; T.O’H). Specimens were collected using ad-hoc, semi-quantitative and quantitative 264 

methods, including trawls, dredges, epibenthic sleds, grabs and corers. The highest density of 265 

ad-hoc samples (e.g., collections by hand) corresponded to coastal occurrence records (0-266 

20m) and were subsequently removed from analyses to minimise potential collection bias3. 267 

The spatial extent and proportion of collection method per 500km cell were plotted to 268 

visualize spatial bias in collection effort (Extended Data Fig. 1).  269 

1.2 Environmental Data  270 

Environmental and physical predictors were used to test hypotheses that seek to explain 271 

patterns of deep-sea species richness (see Table S1 for a summary of hypotheses name, 272 

meaning, relevance, origin and related predictors). Environmental predictors were tri-linearly 273 

interpolated to the seafloor using global ETOPO1 ice-surface GIS bathymetric data set 4. 274 

Annual mean seafloor temperature (C°) (AMT), annual standard deviation of seafloor 275 

temperature (C°) (ASDT) and annual mean oxygen (ml/l) (AMO) were derived from the 276 

CARS 2009 dataset 5,6. The CARS climatology physical oceanography data (1950-2009) 277 

were interpolated across the globe for 79 depth layers at a resolution of 0.5° 278 

latitude/longitude. We also calculated the proportion of AMO grid cells that had <2 millilitres 279 

per litre O2, a critical physiological limit for numerous marine species7 and typically the 280 

threshold for Oxygen Minimization Zones (OMZs)8. Mean annual net primary productivity (g 281 

C m-2 year-1, NPP) and seasonal variation of net primary productivity (g C m-2 year-1; SVI) 282 

were generated from Vertically Generalized Production Model (VGPM)9. NPP and SVI are a 283 

function of satellite-derived chlorophyll (SeaWiFS). NPP and SVI were calculated across the 284 
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years 2003 to 2010 (see http://www.science.oregonstate.edu/ocean.productivity/). Particulate 285 

organic carbon flux to the seafloor (POC flux; g C m-2 year-1) was estimated using NPP and 286 

SVI data and a productivity export model10.  Distance from continental margins (DC) for 287 

deep-sea habitats was estimated based on the IFREMER Continental margins shape file 11. 288 

Custom code was written in R, using functions from packages “raster”, “rgdal” and 289 

“gdistance”, to create a spatial layer that calculates distance of seafloor habitat to nearest 290 

point on the 2000 m contour around continental margins and islands.  291 

For the statistical analyses, environmental predictors were averaged to cell-size across the 292 

three bathomes (20 - 200m, 200 - 2000m & 2000 - 6500m). Strongly correlated variables (> 293 

0.7) were removed from analyses to avoid issues with co-linearity of model coefficients. 294 

AMO was removed from the shelf analysis, due to its correlation with AMT. We removed 295 

NPP from analyses due to its correlation with POC flux. We selected POC flux over NPP as 296 

we were interested in the amount of carbon flux at the seafloor, rather than the surface. All 297 

independent variables used in statistical analyses were centred and normalised (mean= 0, 298 

variance =1). All analyses were performed at spatial scales of 500km equal area grid cells. 299 

2. Statistical Analysis 300 

We were interested in describing patterns of species richness and the processes that shape 301 

observed patterns in the deep-sea benthos. Many authors have approached these analyses 302 

using either bottom-up 12,13 or top-down methods 14.  The respective merits of both 303 

approaches are still debated in the ecological literature 15. We see merits in both approaches, 304 

using them for different purposes.  305 

For a top-down approach we linked estimates of species richness derived from the estimated 306 

asymptotes of species accumulation curves to environmental and physical data using spatial 307 

regression models (SLMs). This assumes that the environment is likely to impose top-down 308 

limits of species richness, independently of species identities. Critically, unlike the species 309 

distribution modelling (see below), we estimated the number of species in a region (cell) 310 

independently of environment predictors, thus enabling us to assess potential determinants of 311 

richness in our modelling framework without circular reasoning. We therefore use this 312 

approach to test hypotheses of processes that shape global deep-sea species richness.  313 

Our second approach used the summation of species distribution models to assess species 314 

richness. Here we used an extension of classic species distribution models that incorporates 315 
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detection probabilities when assessing the distribution of modelled species. Details of our two 316 

approaches are discussed in the following section. 317 

2.1. Spatial Linear Models (SLMs) 318 

2.1.1 Estimation of richness via species accumulation curves 319 

The “coverage-based rarefaction” method16 was used to estimate species richness on a cell-320 

by-cell basis. This method estimates species richness based on a measure of sample 321 

completeness16. The aim is to estimate the ‘sample deficit’, which represents the fraction of 322 

the community that remains undiscovered 17. This is a novel alternative to species 323 

accumulation curves based on the extrapolation of individuals or samples 18, and one which 324 

attempts to scale the richness of each cell to an equivalent level of sampling coverage for all 325 

cells. For our maps of diversity, we used a 75% coverage based estimate of the number of 326 

species per-cell as a conservative balance between extrapolation and completeness of sample 327 

coverage. For each cell we ran the estimator with 1,000 bootstraps, and took the mean as our 328 

point estimate of species richness for each cell. To assess the performance of cell-by-cell 329 

estimation of the number of species, we plotted all estimated species accumulation curves and 330 

their respective bootstrap bounds for each cell and visually assessed the curvilinear nature of 331 

each extrapolation. Species accumulation curves that 1) did not show asymptotic behaviour 332 

or 2) had extreme confidence bounds based on bootstrapping, were removed from further 333 

analysis. Species richness interpolations and extrapolations were calculated using the R 334 

package “Vegan”19 and code adapted from the package “iNEXT”20. 335 

2.1.2 Modelling of estimated richness as a function of environmental predictors 336 

Estimated species richness was used as a response variable in models that tested hypotheses 337 

about its relationship to environmental predictors. We used Spatial Linear Models (SLMs) 338 

that explicitly account for spatial autocorrelation (Extended Data Table 3), specifically 339 

Simultaneous Autoregressive Models (SARs) 21. Neighbourhood size was selected using an 340 

error-SAR process, based on the minimum AIC for spatial null models (model containing the 341 

intercept and the spatial autocorrelation term). Neighbourhood sizes between 1,000 km and 342 

10,000 km were tested at 100km intervals. Neighbourhood size was determined 343 

independently for each depth strata, as it was expected that different bathomes would display 344 

differing extents of spatial autocorrelation due to different ecological and evolutionary 345 

process driving the spatial patterns of species richness. We used an all-model selection 346 

method to find the AIC-best model. We analysed the models and the relative importance of 347 

POSTPRINT UPLOAD DEC 2016 http://www.nature.com/nature/journal/v533/n7603/full/nature17937.html

https://www.nespmarine.edu.au/document/deep-sea-diversity-patterns-are-shaped-energy-availability



 

13 
 

predictors through z-tests (SLMs). We used pseudo-R2 to assess model fit. We fitted linear, 348 

and second-order polynomial functions for each predictor variable given that a number of 349 

studies have emphasised the importance of uni-modal relationships with temperature 22,23 and 350 

POC flux 24 (Extended Data Fig. 4). Models were fitted using the ‘errorslm’ function in 351 

‘spdep’25 package in R.  352 

2.2. Multispecies Occupancy-Detection Models 353 

The second approach for analysis involved Multispecies Occupancy-Detection Models26-28 354 

(MSODMs), a relatively novel but promising community-modelling framework that allows 355 

flexible consideration of species distributions and their detectability. This modelling 356 

framework is grounded in the view that species richness and other attributes of community 357 

structure are best described using models of individual species occurrence that explicitly 358 

account for imperfect detection during sample collection29,30. This framework thus explicitly 359 

deals with potential biases in sampling effort, as those expected in our deep-sea species data.  360 

Multispecies Occupancy-Detection Models (MSODMs) provide a hierarchical and explicit 361 

description of the state (species occurrences) and observation (species detection) processes. 362 

At the heart of the approach is the estimation of the incompletely observed site-by-species 363 

occurrence matrix, from which different summaries of community structure can be derived. 364 

The presence or absence of species i at a site j is described as the outcome of a Bernoulli trial  365 

𝑍𝑖𝑗~Bernoulli (𝜓𝑖𝑗), 366 

where 𝜓𝑖𝑗 is the probability that species i is present at site j, and the latent variable Zij 367 

represents whether the species is present or not at the site (Zij takes value 0 or 1).  368 

The observation model describes the observed data as the outcome of a series of independent 369 

Bernoulli trials with probability 𝑝𝑖𝑗𝑘 at sites where the species is present (Zij = 1) and 0 370 

elsewhere, that is, 371 

𝑌𝑖𝑗𝑘|𝑍𝑖𝑗~Bernoulli (𝑍𝑖𝑗𝑝𝑖𝑗𝑘), 372 

where Yijk are the observed data (detection/non-detection of species i at site j during survey k), 373 

and pijk are the corresponding species detection probabilities (the probability of detecting 374 

species i at site j during survey visit k). The model assumes that the occupancy status of cells 375 

(Zij)do not change during the survey period, which is a reasonable assumption at the 376 

geographical scale of our analysis and time frame of the data collection. Occupancy and 377 
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detection probabilities can then be modelled as a function of relevant environmental 378 

predictors following the generalized linear modelling framework, e.g.  379 

logit(𝜓𝑖𝑗) = 𝛽0𝑖 + 𝛽1𝑖 ∗ covariate1𝑗+. . . +𝛽𝑛𝑖 ∗ covariate𝑛𝑗  , 380 

where n is here the number of predictors in the occupancy component of the model (including 381 

quadratic terms, interactions, etc). In our model, occupancy probability was described as a 382 

function of the 12 to 14 covariates (depending on the depth strata) using linear and quadratic 383 

terms (Extended Data Fig. 5 and 6). We ran a single model with all covariates and considered 384 

covariate contribution, rather than using model selection. Detection probability was described 385 

as a function of the collection method (e.g. dredge or grab) used in each collection event (i.e. 386 

survey visit k at site j) 387 

logit(𝑝𝑖𝑗𝑘) = 𝛼𝑜𝑖 + 𝛼1𝑖 ∗ gear
𝑗𝑘

 . 388 

In the MSODM framework, individual species models are linked through random effects in a 389 

hierarchical fashion, this way exploiting similarities in environmental responses to borrow 390 

information across species. This is achieved by describing the parameters from species-391 

specific models as realizations from a common distribution, whose parameters (or 392 

‘hyperparameters’) are estimated. For our analysis, parameters were described using 393 

independent normal distributions as follows 394 

𝛽𝑥𝑖~ N (𝜇𝛽𝑥
, 𝜎𝛽𝑥

2 ) and 𝛼𝑥𝑖~ N (𝜇𝛼𝑥
, 𝜎𝛼𝑥

2 ). 395 

Once a MSODM is fit, species richness and other metrics of community structure can be 396 

derived based on the parameter estimates obtained. In particular, species richness is simply 397 

obtained by summing the estimated occupancy probabilities across species. The estimated 398 

species richness at site 𝑗 (𝑁̂𝑗) is thus calculated as 399 

𝑁̂𝑗 = ∑ 𝜓̂𝑖𝑗

𝐼

𝑖=1

, 400 

that is, the species richness estimate at site j is equal to the expected number of species at the 401 

site. 402 

The MSODM framework allows inference about the number of species that were completely 403 

missed during sampling26,27. In our analysis however, estimation was restricted to species 404 

with a minimum of ten occurrences because of computational limitations on estimating rare 405 
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and undetected species in large species by sites matrices. We fitted separate MSODMs to the 406 

three bathomes, shelf (320 species), upper slope (440) and deep-sea (58) (Fig. 1a-c). 407 

Our MSODM model makes two key assumptions: Cell sites are visited multiple times over a 408 

period of population closure during which the occupancy status (Zik) of a site does not 409 

change. This assumption is likely to be violated at small spatial scales, however as we are 410 

estimating occupancy at large scales, it is possible to assume that occupancy in the 500km 411 

cells should not change over the time scale of these data collections. The second assumption 412 

is that species identification is constant across the dataset with no false-positive 413 

identifications in the data. The data used in this analysis was verified by a taxonomic expert 414 

(TO’H) from museum based records or the taxonomic literature to ensure consistent 415 

identification across the whole dataset. The spatial MSODMs for shelf, slope and deep-water 416 

assemblages are presented in Fig. 1a-c. We can also assess the uncertainty in spatial 417 

predictions of occupancy probabilities across all species in the MSODMs, we do this by 418 

presenting the mean variance in MSODM predictions for shelf, slope and deep-water 419 

diversity. The variance predicted occupancy probability is calculated spatially for each 420 

species and the mean variance across all species per-cell (Extended Data Fig. 3a-b).  421 

Models were fitted using JAGS 31,32, a program for Bayesian inference using Markov chain 422 

Monte Carlo (MCMC). JAGS was controlled via an R script using package “R2jags” 33. 423 

Three chains were run with different initial values, a burn-in of 2,000 iterations and a 424 

minimum of 20,000 iterations with a thinning by 50. Model convergence was assessed using 425 

the 𝑅̂ (“R-hat”) statistic 34. We present parameter posteriors distributions for covariate 426 

estimates, which represent the distribution of all species response to each covariate. We also 427 

present the 10- 90th percentile of species partial response to covariates as a function of 428 

occupancy (ψ) for each bathome (Extended Data Fig. 5), we also report the mean posterior 429 

distributions of parameter estimates for all species (Extended Data Fig. 6).  430 

We also compared deviances of null (intercept only) and full covariate models for each 431 

bathome. Table of deviances, DIC and pD (an estimate of deviance relative to variance) are 432 

presented in Extended Data Table S5.  Bespoke C++ code, written using C++ and Armadillo 433 

C++ linear libraries35, which was integrated into the R environment using Rcpp 36 and 434 

RcppArmadillo 37, was used to predict the occupancy of species individually from fine scale 435 

environmental data. The code uses a 500km moving window to estimate fine scale 436 
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probabilities based on the original 500km resolution of the original MSODMs. This 437 

essentially smooths predictions to be representative of the original cell size estimates. 438 

Fig. 2 was derived from MSODMs, by predicting the probability of occupancy for each 439 

species at a series of depth bounds. For the shelf we predicted the probability of our 320 440 

species at 50m depth intervals (0-50, 50-100,100-150 and 150-200m). For slope species we 441 

broke up the environment into 200m depth intervals (200-2000m). While for abyss and lower 442 

slope we broke up the depth bands into 500m intervals (2000-6500m). The estimated species 443 

richness at site 𝑗 (𝑁̂𝑗) is thus calculated for each cell 500km cell at each depth layer. We then 444 

took the mean of 𝑁̂𝑗for each latitudinal band across the global prediction. .  445 

All analyses were undertaken in the R statistical language version 3.038. Details about the 446 

packages and functions used are given under each section (we provide our code as Extended 447 

Data material). Spatial predictions where plotted using ArcMap 1039 and R spatial packages 448 

(Rgdal40, Raster41, Maptools42and dismo43). 449 
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Extended Data 549 

 550 

Extended Data Figure 1: Distribution of global sampling effort across deep-sea 551 
bathomes. Spatial plots of sampling effort for ophiuroid occurrence data at the same equal-552 
area grid cells used in MSODM at 500km equal area grid cells, maximum effort is capped at 553 
100 visit to help visualise low and high regions of repeated effort. Shelf effort from 20-200m 554 
(a), slope effort from 200-2000m (b) and deep-water collection effort from 2000-6500m (c). 555 
Ophiuroid distribution data is presented for shelf (d; red), slope (e; orange) and deep-water (f; 556 
yellow); key represents depth profile. 557 
 558 
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 559 
 560 
Extended Data Figure 2: Model estimated global deep sea species richness across 561 
different depth strata. Maps of species count (Nhat) as calculated using MSODM are 562 
presented as shelf (a), slope (b) and deep-water species (c). Nhat is an estimate of species 563 

present per cell based on our occurrence matrix (Z). Z a latent variable used to calculated 564 
presences and absences of species within each cell. 565 
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 566 
Extended Data Figure 3: Mean Variance of Multispecies occupancy detection models 567 
(MSODM) predictions of species occupancy probabilities, for (a) shelf diversity (20-568 

200m), (b) slope diversity (200-2000m) and (c) deep-water diversity (2000-6500m). 569 

 570 
 571 
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 572 
Extended Data Figure 4: Linear Partial residual plots as derived from SLMs. Partial 573 
residual plots for significant variables included in the models for global deep-sea richness at 574 
(a) shelf (20-200m), (b) upper-slope (200-200m) and deep-water (LSA; 2000-6500m). 575 

Hatched lines are partial fits (red lines). Values on the x-axis are centred and normalised 576 

(mean= 0, variance =1), as derived from spatial linear models. 577 
 578 
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 579 
Extended Data Figure 5: Environmental relationships covariate estimated with the 580 
multispecies occupancy–detection model. The shaded areas represent the regions delimited 581 
by the 10th–90th percentiles of the estimates obtained from the responses of all species. From 582 

top to bottom, rows display the estimates of occupancy (ψ), for shelf (green), slope (blue) and 583 
abyss (red) species. All covariates were centred and normalised (mean= 0, variance =1). 584 

 585 
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 586 
Extended Data Figure 6, Bayesian Posterior Estimates. Deep-water MSODM parameter  587 
estimates, for (a) shelf, (b) slope, and (c) deep-water species. Posterior distributions of 588 
parameter estimates are across all species. All covariates were centred and normalised 589 
(mean= 0, variance =1). 590 
 591 

 592 

  593 

POSTPRINT UPLOAD DEC 2016 http://www.nature.com/nature/journal/v533/n7603/full/nature17937.html

https://www.nespmarine.edu.au/document/deep-sea-diversity-patterns-are-shaped-energy-availability



 

25 
 

Extended Data Table 1. Encapsulation of species richness hypotheses by environmental and 594 

physical predictors. 595 

 596 
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Extended Data Table 2. Correlations between environmental predictors used in GLMs, 597 
SLMs and MSODMs by bathome. Correlations with an absolute value of greater than 0.7 are 598 
highlighted as bold. 599 

 600 
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Extended Data Table 3. Top SLMs based on AIC under all model selection for each 601 

bathome (Delta AIC of <2). We present model covariates including linear and quadratic 602 

terms, the number of parameters (k), Akaike Information Criteria (AIC), R2 and Moran’s P-603 
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value for each model.  604 

 605 

  606 
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Extended Data Table 4. Deviance reduction between null multispecies occupancy detection 607 
models and fully fitted models. Estimates are presented with Bayesian Confidence interval 608 
(BCI) for hierarchical multispecies occupancy detection models. pD is a Bayesian statistic 609 

that measures deviance, it is represented as: 𝑝𝐷 =   𝑣𝑎𝑟(𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒) / 2, which is calculated 610 
in JAGS software (Just Another Gibbs Sampler). 611 

 612 
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